1
|
Ibrahim SRM, Mohamed SGA, Abdallah HM, Mohamed GA. Ethnomedicinal uses, phytochemistry, and pharmacological relevance of Justicia procumbens (Oriental Water Willow) - A promising traditional plant. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116819. [PMID: 37385576 DOI: 10.1016/j.jep.2023.116819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Justicia procumbens L. (JP) (Oriental Water Willow, Shrimp plant, Acanthaceae) is a herbaceous plant that is commonly found in India, Taiwan, Australia, Southern China, Vietnam, and Korea. The plant has been primarily used to treat fever, asthma, edema, cough, jaundice, urinary tract infection, and sore throat, as well as for snake bites and as a fish-killer. In the present review, the reported phyto-chemical, ethno-pharmacological, biological, and toxicological studies on J. procumbens were summarized. Special focus had been given to its reported lignans, regarding their isolation, characterization, quantitative estimation, and biosynthesis. MATERIALS AND METHODS A survey of the literature was done using assorted databases and publishers; Scopus, Sci-Finder, Web of Science, PubMed, GoogleScholar, ScienceDirect, Wiley, Taylors&Francis, Bentham, Thieme, and Springer. RESULTS Currently, 95 metabolites have been separated fromJ. procumbens. Lignans and their glycosides were reported as main phyto-constituents of J. procumbens. Various methods are mentioned for quantitative estimation of these lignans. These phyto-constituents possessed wide pharmacological effectiveness, such as antiplatelet aggregation, antimicrobial, antitumor, and antiviral. CONCLUSIONS Many of the stated effects are harmonious with the reported traditional uses of this plant. This data could further support J. procumbens's utilization as a herbal remedy and drug lead. However, further study of J. procumbens toxicity, as well as preclinical and clinical investigation is required to ensure the safe usage of J. procumbens.
Collapse
Affiliation(s)
- Sabrin R M Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| | - Shaimaa G A Mohamed
- Faculty of Dentistry, British University, El Sherouk City, Suez Desert Road, Cairo, 11837, Egypt
| | - Hossam M Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Overview of the Justicia Genus: Insights into Its Chemical Diversity and Biological Potential. Molecules 2023; 28:molecules28031190. [PMID: 36770856 PMCID: PMC9920429 DOI: 10.3390/molecules28031190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/27/2023] Open
Abstract
The genus Justicia has more than 600 species distributed in both hemispheres, in the tropics and temperate regions, and it is used in the treatment of numerous pathologies. This study presents a review of the biological activities of plant extracts and isolated chemical constituents of Justicia (ACANTHACEAE), identified in the period from May 2011 to August 2022. We analyzed over 176 articles with various biological activities and chemical compound descriptions present in the 29 species of Justicia. These have a variety of applications, such as antioxidant and antimicrobial, with alkaloids and flavonoids (e.g., naringenin) the most frequently identified secondary metabolites. The most observed species were Justicia gendarussa Burm., Justicia procumbens L., Justicia adhatoda L., Justicia spicigera Schltdl, and Justicia pectoralis Jacq. The frontier molecular orbitals carried out using density functional theory (M062X and basis set 6-311++G(d,p) indicate reactive sites for naringenin compound and a chemical reaction on phytomedicine activity. The energy gap (206.99 kcal/mol) and dimer solid state packing point to chemical stability. Due to the wide variety of pharmacological uses of these species, this review points toward the development of new phytomedicines.
Collapse
|
3
|
Wang LX, Wang HL, Huang J, Chu TZ, Peng C, Zhang H, Chen HL, Xiong YA, Tan YZ. Review of lignans from 2019 to 2021: Newly reported compounds, diverse activities, structure-activity relationships and clinical applications. PHYTOCHEMISTRY 2022; 202:113326. [PMID: 35842031 DOI: 10.1016/j.phytochem.2022.113326] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Lignans, with various biological activities, such as antitumor, antioxidant, antibacterial, and antiviral activities, are widely distributed in nature and mainly exist in the xylem of plants. In this paper, we summarized the structures and bioactivities of lignans reported in recent years (2019-2021) from five parts, including (1) a summary and classification of newly reported compounds; (2) the pharmacological activities of lignans; (3) molecular resources and activity distribution; (4) the structure-activity relationships; and (5) the clinical application of lignans. This review covers all undescribed compounds that were reported within the covered period of time and all bioactivity data about previously isolated lignans. The distribution of lignans in different plants and families is visualized, which improves the efficiency of searching for specific molecules. The diverse activities of different types of lignans provide an important reference for the rapid screening of these compounds. Discussion about the structure-activity relationships of lignans provides a direction for the structural modification of skeleton molecules. Combined with the clinical application of such molecules, this work will provide a valuable reference for pharmaceutical chemists.
Collapse
Affiliation(s)
- Li-Xia Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Liang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiao Huang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Tian-Zhe Chu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hai Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hu-Lan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yong-Ai Xiong
- College of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| | - Yu-Zhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
4
|
Chemical Composition, Antibacterial and Antioxidant Activities of the Essential Oil of Justicia procumbens. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Chemical Constituents of the Aerial Part of Zygophyllum gaetulum. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Zhang Y, Yao Y, Fu Y, Yuan Z, Wu X, Wang T, Hong Z, Yang Y, Wu H. Inhibition effect of oxyepiberberine isolated from Coptis chinensis franch. On non-small cell lung cancer based on a network pharmacology approach and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114267. [PMID: 34087401 DOI: 10.1016/j.jep.2021.114267] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As an important Chinese herb, Coptis chinensis Franch. (Huanglian, HL) has a long history of usage for clearing heat, eliminating dampness, purging fire and detoxification in Traditional Chinese Medicine (TCM). HL, also called goldthread, was frequently used for the treatment of typhoid, tuberculosis, epidemic cerebrospinal meningitis, pertussis, and other lung-related diseases. Modern research has shown that HL and its main compounds also have anti-tumor effects. However, studies have not reported whether its main compounds inhibit Non-small cell lung cancer (NSCLC) development and progression. OBJECTIVE This study aimed to find out the potential targets and mechanisms of Oxyepiberberine (OPB) isolated from HL in the treatment of NSCLC, using network pharmacology and biological experimental. METHODS Silica gel chromatography column was used to isolate OPB from HL, and the structure of OPB was elucidated using different spectroscopic analysis methods, including 1H-nuclear magnetic resonance (NMR), 13C-NMR and electrospray ionization mass spectrometry (ESI/MS). MTT assay was performed to determine cell proliferation of OPB on A549, H1975 and BEAS-2B cells. Then, the potential targets, pathways and hub genes of OPB for treating NSCLC were screened out through network pharmacology. Based on the results of network pharmacology, core targets of OPB for treating NSCLC were docking with OPB via molecular docking. Wound healing, plate clone, Hoechst staining, and western blot assay were used to verify the function of OPB in treatment of NSCLC. RESULTS OPB was isolated from the HL, its molecular formula was identified as C20H17NO5. Through MTT, OPB significantly inhibited the proliferation of H1975 cells and A549 cells, and A549 was chosen as the test cancer cell. Through network pharmacology, 22 potential targets, 156 related-pathways, and 6 hub genes were screened out. The results of molecular docking showed that SRC, BRAF, and MMP9 were the core targets of OPB against NSCLC. Through biological experimental, it was found that OPB inhibited growth and migration of A549 cells. In addition, OPB induced apoptosis in A549 cells. Through western blot assay, the expressions of Src, ERK1/2 and other four proteins were down-regulated, which suggested that OPB inhibited the proliferation of lung cancer cells by down-regulating SRC-FAK-RAS-RAF-MEK-ERK pathway, so as to achieve the anti-NSCLC effect. CONCLUSION Our study demonstrated that anti-NSCLC effect of OPB through network and experiments, which provided a theoretical basis for the clinical antitumor of OPB, and provided a foundation for further study of OPB.
Collapse
Affiliation(s)
- Ying Zhang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yunfeng Yao
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yingjie Fu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zixin Yuan
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xingpan Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Tianshun Wang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zongchao Hong
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yanfang Yang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, 430061, China.
| | - Hezhen Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, 430061, China.
| |
Collapse
|
7
|
Zhang Y, Hong Z, Yuan Z, Wang T, Wu X, Liu B, Ai Z, Wu H, Yang Y. Extract from Rostellularia procumbens (L.) Nees Inhibits Thrombosis and Platelet Aggregation by Regulating Integrin β 3 and MAPK Pathways. ACS OMEGA 2020; 5:32123-32130. [PMID: 33344867 PMCID: PMC7745434 DOI: 10.1021/acsomega.0c05227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
AIM OF STUDY The main objective of this study was to investigate the antithrombotic and antiplatelet effect of the extract from Rostellularia procumbenss (L.) Nees and understand the mechanisms by which it exerts its antithrombotic and antiplatelet mechanisms. MATERIALS AND METHODS The antithrombotic effective parts (RPE) were isolated using D101 macroporous adsorption resin and potential active ingredients (JAC) were isolated using the preparative liquid-phase method. The lactate dehydrogenase kit was used to determine the toxicity of RPE and JAC to platelets. The antiadhesion effect of RPE and JAC on platelets was observed by fluorescence microscopy with rhodamine phalloidin. Antithrombotic efficacy of RPE and JAC in vivo was evaluated by establishing a rat tail thrombosis model. Contents of p-selectin, TXB2, and 6-keto-PGF1α in rat serum were measured using an enzyme-linked immunosorbent (ELISA) assay, and the rat black tail rate was measured to prove the protective effect of RPE and JAC on the tail thrombus rat model. Western blot was used for detection of serum-related proteins in the tail thrombus rat model. RESULTS The results showed that RPE had antithrombotic and antiplatelet effects. RPE and JAC have no toxicity to platelets. In vitro experiments showed that RPE and JAC had antiadhesion effects on platelets. In vivo experiments showed that RPE significantly inhibited the increase of p-selectin and TXB2 and significantly increased the content of 6-keto-PGF1α in the serum of rats. Western blot results demonstrated that RPE and JDB significantly inhibited the phosphorylation of the MAPK protein family in the platelets of rats, and RPE also significantly inhibited the phosphorylation of β3 protein. CONCLUSIONS RPE has antithrombotic and antiplatelet activity in vivo and vitro. Its mechanism may be via preventing integrin αIIbβ3 activation, which in turn leads to the inhibition of the phosphorylation of the MAPK family and further suppresses TXA2, which leads to the antithrombotic and antiplatelet effects.
Collapse
Affiliation(s)
- Ying Zhang
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
| | - Zongchao Hong
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
| | - Zixin Yuan
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
| | - Tianshun Wang
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
| | - Xingpan Wu
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
| | - Bo Liu
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
| | - Zhongzhu Ai
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
| | - Hezhen Wu
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
- Key Laboratory
of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan 430065, China
- Collaborative Innovation Center of Traditional
Chinese Medicine of New Products for Geriatrics Hubei Province, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yanfang Yang
- Faculty of Pharmacy, Hubei University of
Chinese Medicine, Wuhan 430065, China
- Key Laboratory
of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan 430065, China
- Collaborative Innovation Center of Traditional
Chinese Medicine of New Products for Geriatrics Hubei Province, Hubei University of Chinese Medicine, Wuhan 430065, China
| |
Collapse
|