1
|
Zhou T, Hao J, Tang Q, Chandarajoti K, Ye W, Fan C, Wang X, Wang C, Zhang K, Han X, Zhou W, Ge Y. Antimicrobial activity and structure-activity relationships of molecules containing mono- or di- or oligosaccharides: An update. Bioorg Chem 2024; 148:107406. [PMID: 38728907 DOI: 10.1016/j.bioorg.2024.107406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
Bacterial infections are the second leading cause of death worldwide, and the evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens exacerbate the threat crisis. Carbohydrates participate in bacterial infection, drug resistance and the process of host immune regulation. Numerous antimicrobials derived from carbohydrates or contained carbohydrate scaffolds that are conducive to an increase in pathogenic bacteria targeting, the physicochemical properties and druggability profiles. In the paper, according to the type and number of sugar residues contained in antimicrobial molecules collected from the literatures ranging from 2014 to 2024, the antimicrobial activities, action mechanisms and structure-activity relationships were delineated and summarized, for purpose to provide the guiding template to select the type and size of sugars in the design of oligosaccharide-based antimicrobials to fight the looming antibiotic resistance crisis.
Collapse
Affiliation(s)
- Tiantian Zhou
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, E. 280, University town, Waihuan Rd, Panyu, Guangzhou 510006, Guangdong, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Jiongkai Hao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Qun Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Kasemsiri Chandarajoti
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat‑Yai, Songkhla, 90112, Thailand
| | - Wenchong Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Chuangchuang Fan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yuewei Ge
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, E. 280, University town, Waihuan Rd, Panyu, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
2
|
Belmehdi O, Taha D, Abrini J, Ming LC, Khalid A, Abdalla AN, Algarni AS, Hermansyah A, Bouyahya A. Anticancer properties and mechanism insights of α-hederin. Biomed Pharmacother 2023; 165:115205. [PMID: 37499451 DOI: 10.1016/j.biopha.2023.115205] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
α-Hederin is a natural bioactive molecule very abundant in aromatic and medicinal plants (AMP). It was identified, characterized, and isolated using different extraction and characterization technologies, such as HPLC, LC-MS and NMR. Biological tests have revealed that this natural molecule possesses different biological properties, particularly anticancer activity. Indeed, this activity has been investigated against several cancers (e.g., esophageal, hepatic, breast, colon, colorectal, lung, ovarian, and gastric). The underlying mechanisms are varied and include induction of apoptosis and cell cycle arrest, reduction of ATP generation, as well as inhibition of autophagy, cell proliferation, invasion, and metastasis. In fact, these anticancer mechanisms are considered the most targeted for new chemotherapeutic agents' development. In the light of all these data, α-hederin could be a very interesting candidate as an anticancer drug for chemotherapy, as well as it could be used in combination with other molecules already validated or possibly investigated as an agent sensitizing tumor cells to chemotherapeutic treatments.
Collapse
Affiliation(s)
- Omar Belmehdi
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - Douae Taha
- Laboratory of Spectroscopy, Molecular Modelling Materials, Nanomaterials Water and Environment-CERNE2D, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - Jamal Abrini
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, BE1410 Gadong, Brunei Darussalam; School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia.
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, the Sudan.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah , Saudi Arabia.
| | - Alanood S Algarni
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah , Saudi Arabia.
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
3
|
Badalamenti N, Modica A, Bazan G, Marino P, Bruno M. The ethnobotany, phytochemistry, and biological properties of Nigella damascena - A review. PHYTOCHEMISTRY 2022; 198:113165. [PMID: 35339516 DOI: 10.1016/j.phytochem.2022.113165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
This review is a systematic scientific work on medicinal and traditional use, on the chemical composition of specialized metabolites, volatile and non-volatile, on aspects related to toxicology and phytotherapy of Nigella damascena L. The genus Nigella (Ranunculaceae) is distributed throughout the Mediterranean basin, extending to northern India, and has been divided into three sections. Nigella damanscena L. is traditionally used as an ingredient in food, for example, as flavouring agents in bread and cheese, but is also known in folk medicine, used to regulate menstruation; for catarrhal affections and amenorrhea; as a diuretic and sternutatory; as an analgesic, anti-oedematous, and antipyretic; and for vermifuge and its disinfectant effects. This paper reviews the most dated to the latest scientific research on this species, highlighting the single isolated metabolites and exploring their biological activity. Fifty-seven natural compounds have been isolated and characterised from the seeds, roots, and aerial parts of the plant. Among these constituents, alkaloids, flavonoids, diterpenes, triterpenes, and aromatic compounds are the main constituents. The isolated compounds and the various extracts obtained with solvents of different polarities presented a diverse spectrum of biological activities such as antibacterial, antifungal, antitumour, antioxidant, anti-inflammatory, antipyretic, anti-oedema, and antiviral activities. Various in vitro and in vivo tests have demonstrated the pharmacological potential of β-elemene and alkaloid damascenin. Unfortunately, the largest number of biological studies on this species and its metabolites have been conducted in vitro; therefore, further investigation is necessary to evaluate the toxicological aspects and real mechanisms of action of crude extracts to confirm the therapeutic potential of N. damascena.
Collapse
Affiliation(s)
- Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Aurora Modica
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Giuseppe Bazan
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| | | | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy; Centro Interdipartimentale di Ricerca 'Riutilizzo Bio-based degli scarti da matrici agroalimentari' (RIVIVE), University of Palermo, Italy
| |
Collapse
|
4
|
Torun H, Aydın H. Ecophysiological responses of endemic Cephalaria duzceënsis to drought and salt stress. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Biotechnological Potential of Cephalaria uralensis (Murray) Roem. & Schult. and C. gigantea (Ledeb.) Bobrov-Comparative Analysis of Plant Anatomy and the Content of Biologically Active Substances. PLANTS 2021; 10:plants10050986. [PMID: 34063452 PMCID: PMC8156801 DOI: 10.3390/plants10050986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022]
Abstract
Studies conducted to date have shown that Cephalaria uralensis and C. gigantea have high contents of substances with antibacterial, anti-inflammatory, and antioxidant properties; hence, they are attractive plants from the pharmaceutical point of view. However, despite their multifarious desirable biotechnological aspects, the knowledge of these plants is insufficient. The present study focused on the analysis of the morphological, anatomical, and histological structure of aboveground parts of the plants, the identification of the distribution of biologically active compounds in the tissues, and quantitative phytochemical analyses of polyphenolic compounds contained in their aboveground organs. Importantly, the phenological and morphological features of the aboveground organs in the analyzed species were maintained, as in the same plant species growing in different climatic conditions. The analysis of primary metabolites and phenolic compounds in the tissues revealed their distribution in the aboveground organs, which has never been described before. The comparative analyses of the content of total phenolics, total phenolic acids, and total flavonoids in the aboveground organs showed that the level of these substances differed not only between the species but also between the organs. It should be emphasized that the level of these compounds is higher than in many other medicinal plants.
Collapse
|
6
|
Chrząszcz M, Miazga-Karska M, Klimek K, Granica S, Tchórzewska D, Ginalska G, Szewczyk K. Extracts from Cephalaria Uralensis (Murray) Roem. & Schult. and Cephalaria Gigantea (Ledeb.) Bobrov as Potential Agents for Treatment of Acne Vulgaris: Chemical Characterization and In Vitro Biological Evaluation. Antioxidants (Basel) 2020; 9:E796. [PMID: 32859126 PMCID: PMC7555732 DOI: 10.3390/antiox9090796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to compare the chemical composition, as well as antioxidant, anti-inflammatory, antiacne, and cytotoxic activites of various extracts of Cephalaria gigantea and C. uralensis. It is worth underlining that we are the first to characterize the composition and evaluate the biological properties of extracts from Cephalaria gigantea and C. uralensis. Thus, the LC-DAD-MS3 analysis revealed the presence of 41 natural products in studied extracts. The 5-O-caffeoylquinic acid, isoorinetin, and swertiajaponin were the main detected compounds. Among the tested samples, ethanol extract of the aerial parts of C. uralensis (CUE) possessed the most suitable biological properties. It exhibited moderate ability to scavenge free radicals and good capacity to inhibit cyclooxygenase-1, as well as cyclooxygenase-2. Moreover, CUE possessed moderate antibacterial activity against all tested bacterial strains (S. aureus, S. epidermidis, and P. acnes), and importantly, it was non-toxic towards normal skin fibroblasts. Taking into account the value of calculated therapeutic index (>10), it is worth noting that CUE can be subjected to in vivo study. Thus, CUE constitutes a very promising antiacne agent.
Collapse
Affiliation(s)
- Małgorzata Chrząszcz
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland;
| | - Małgorzata Miazga-Karska
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland; (M.M.-K.); (K.K.); (G.G.)
| | - Katarzyna Klimek
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland; (M.M.-K.); (K.K.); (G.G.)
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Dorota Tchórzewska
- Department of Plant Anatomy and Cytology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Grażyna Ginalska
- Department of Biochemistry and Biotechnology, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland; (M.M.-K.); (K.K.); (G.G.)
| | - Katarzyna Szewczyk
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland;
| |
Collapse
|