1
|
Lu P, Shi Y, Zhang J, Hong K, Xue Y, Liu L. New prenylated indole-benzodiazepine-2,5-diones with α-glucosidase inhibitory activities from the mangrove-derived Aspergillus spinosus. Int J Biol Macromol 2024; 257:128808. [PMID: 38101666 DOI: 10.1016/j.ijbiomac.2023.128808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Mangrove-derived fungi have been demonstrated to be promising source of structurally diverse and widely active secondary metabolites. During our search for new bioactive compounds, eight new indole-benzodiazepine-2,5-dione derivatives asperdinones A-H (1-8) and two known congeners (9 and 10) were isolated from the culture extracts of the mangrove-derived fungus Aspergillus spinosus WHUF0344 guided by one strain many compounds (OSMAC) and the heteronuclear 1H, 13C single-quantum coherence (HSQC) based small molecule accurate recognition technology (SMART) strategies. The structures and absolute configurations of the new compounds were elucidated by detailed spectroscopic analyze and electronic circular dichroism (ECD) calculations. The putative biosynthetic pathway of these compounds was proposed. Compounds 1-10 were evaluated for their antibacterial and α-glucosidase inhibitory activities. None of compounds showed antibacterial activity. Compounds 2-6 and 8 exhibited moderate inhibitory effects against α-glucosidase with IC50 values in the range of 24.65-312.25 μM. Besides, both 3 and 4 inhibited α-glucosidase variedly. Furthermore, the molecular docking study showed that compounds 2-4 were perfectly docking into the active sites of α-glucosidase. This study not only enriched the chemical diversity of secondary metabolites from the mangrove-derived fungi, but also provided potential hit compounds for further development of α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Peiyu Lu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ying Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jinxin Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Yaxin Xue
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
2
|
Long XM, Zhu QF, Wang B, Chen GG, Li KY, He X, Liao SG, Xu GB. Chemical constituents of Aspergillus udagawae isolated from the soil of the Xingren coal areas and their antibacterial activities. Nat Prod Res 2023; 37:2841-2848. [PMID: 36282894 DOI: 10.1080/14786419.2022.2137798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 10/31/2022]
Abstract
A new helvolic acid derivative (1), together with nine known compounds (2-10) were isolated from the metabolites of Aspergillus udagawae MST1-10 with the bioassay-guided fractionation method. Their structures were identified on the basis of spectroscopic analysis. The absolute configuration of compound 1 was elucidated through NOESY and ECD spectra. Compound 2 displayed significant antibacterial activities against Stenotrophomonas maltophilia with MIC value of 2 μg/mL (Trimethoprim, MIC = 64 μg/mL), and with biofilm inhibition rates of 96.41%, 87.77%, and 41.70% at 4MIC, 2MIC, and MIC, respectively.
Collapse
Affiliation(s)
- Xing-Mei Long
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, Guizhou, China
| | - Qin-Feng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
| | - Bing Wang
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Guang-Gui Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
| | - Kai-Yu Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xun He
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, Guizhou, China
| | - Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou, China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Maj W, Pertile G, Frąc M. Soil-Borne Neosartorya spp.: A Heat-Resistant Fungal Threat to Horticulture and Food Production-An Important Component of the Root-Associated Microbial Community. Int J Mol Sci 2023; 24:1543. [PMID: 36675060 PMCID: PMC9867472 DOI: 10.3390/ijms24021543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Soil-borne Neosartorya spp. are the highly resilient sexual reproductive stage (teleomorph) of Aspergillus spp. Fungi of this genus are relevant components of root-associated microbial community, but they can also excrete mycotoxins and exhibit great resistance to high temperatures. Their ascospores easily transfer between soil and crops; thus, Neosartorya poses a danger to horticulture and food production, especially to the postharvest quality of fruits and vegetables. The spores are known to cause spoilage, mainly in raw fruit produce, juices, and pulps, despite undergoing pasteurization. However, these fungi can also participate in carbon transformation and sequestration, as well as plant protection in drought conditions. Many species have been identified and included in the genus, and yet some of them create taxonomical controversy due to their high similarity. This also contributes to Neosartorya spp. being easily mistaken for its anamorph, resulting in uncertain data within many studies. The review discusses also the factors shaping Neosartorya spp.'s resistance to temperature, preservatives, chemicals, and natural plant extracts, as well as presenting novel solutions to problems created by its resilient nature.
Collapse
Affiliation(s)
| | | | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
4
|
Ishikawa K, Ishii M, Yaguchi T, Katada T, Ichinose K, Ohata S. epi-Aszonalenin B from Aspergillus novofumigatus inhibits NF-κB activity induced by ZFTA-RELA fusion protein that drives ependymoma. Biochem Biophys Res Commun 2022; 596:104-110. [DOI: 10.1016/j.bbrc.2022.01.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/02/2022]
|