Polymeric Compounds of Lingonberry Waste: Characterization of Antioxidant and Hypolipidemic Polysaccharides and Polyphenol-Polysaccharide Conjugates from
Vaccinium vitis-idaea Press Cake.
Foods 2022;
11:foods11182801. [PMID:
36140930 PMCID:
PMC9497698 DOI:
10.3390/foods11182801]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
Lingonberry (Vaccinium vitis-idaea L.) fruits are important Ericaceous berries to include in a healthy diet of the Northern Hemisphere as a source of bioactive phenolics. The waste generated by the V. vitis-idaea processing industry is hard-skinned press cake that can be a potential source of dietary fiber and has not been studied thus far. In this study, water-soluble polysaccharides of V. vitis-idaea press cake were isolated, separated, and purified by ion-exchange and size-exclusion chromatography. The results of elemental composition, monosaccharide analysis, ultraviolet–visible and Fourier-transform infrared spectroscopy, molecular weight determination, linkage analysis, and alkaline destruction allowed us to characterize two polyphenol–polysaccharide conjugates (PPC) as neutral arabinogalactans cross-linked with monomeric and dimeric hydroxycinnamate residues with molecular weights of 108 and 157 kDa and two non-esterified galacturonans with molecular weights of 258 and 318 kDa. A combination of in vitro and in vivo assays confirmed that expressed antioxidant activity of PPC was due to phenolic-scavenged free radicals, nitrogen oxide, hydrogen peroxide, and chelate ferrous ions. Additionally, marked hypolipidemic potential of both PPC and acidic polymers bind bile acids, cholesterol, and fat, inhibit pancreatic lipase in the in vitro study, reduce body weight, serum level of cholesterol, triglycerides, low/high-density lipoprotein–cholesterol, and malondialdehyde, and increase the enzymatic activity of superoxide dismutase, glutathione peroxidase, and catalase in the livers of hamsters with a 1% cholesterol diet. Polysaccharides and PPC of V. vitis-idaea fruit press cake can be regarded as new antioxidants and hypolipidemic agents that can be potentially used to cure hyperlipidemic metabolic disorders.
Collapse