1
|
Chen B, Tan H, Li C, Li L, Zhang Z, Li Z. Enhanced hypoxanthine utilization for cAMP salvage synthesis efficiently by Arthrobacter sp. CCTCC 2013431 via xanthine oxidase inhibition. Biotechnol Lett 2024:10.1007/s10529-024-03513-z. [PMID: 39066959 DOI: 10.1007/s10529-024-03513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/06/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
When hypoxanthine was utilized as the activator for the salvage pathway in cAMP synthesis, xanthine oxidase would generate in quantity leading to low hypoxanthine conversion ratios and cell viability. To enhance cAMP salvage synthesis, fermentations with citrate/luteolin and hypoxanthine coupling added were conducted in a 7 L bioreactor and then multiple physiological indicators of fermentation with luteolin addition were assayed. Due to hypoxanthine feeding, cAMP productivity reached 0.066 g/(L·h) with 43.5% higher than control, however, cAMP synthesis, cell growth and glucose uptake all ceased at 50 h which was shortened by 22 h in comparison to control. The addition of citrate resulted in the cessation of fermentation at 61 h, on the contrary, owing to luteolin addition, cAMP fermentation performance was enhanced significantly during the whole fermentation period (72 h) with higher hypoxanthine conversion ratios and cAMP contents when compared with citrate and only hypoxanthine added batches. Multiple physiological indicators revealed that luteolin inhibited xanthine oxidase activity reducing hypoxanthine decomposition and ROS generation. ATP/AMP, NADH/NAD+ and NADPH/NADP+ were significantly increased especially at the late phase. Moreover, HPRT, PUP expression contents and corresponding gene transcription levels were also elevated. Luteolin could inhibit xanthine oxidase activity and further decrease hypoxanthine decomposition and ROS generation leading to higher hypoxanthine conversion and less cell damage for cAMP salvage synthesis efficiently.
Collapse
Affiliation(s)
- Baofeng Chen
- School of Life Sciences, Henan Institute of Science and Technology, 90 Hualan Road, Xinxiang, 453003, Henan, China
| | - Hai Tan
- School of Life Sciences, Henan Institute of Science and Technology, 90 Hualan Road, Xinxiang, 453003, Henan, China
| | - Chang Li
- School of Humanity and Law, Zhengzhou Technology and Business University, Zhengzhou, 451400, China
| | - Linbo Li
- School of Life Sciences, Henan Institute of Science and Technology, 90 Hualan Road, Xinxiang, 453003, Henan, China
| | - Zhonghua Zhang
- School of Life Sciences, Henan Institute of Science and Technology, 90 Hualan Road, Xinxiang, 453003, Henan, China
| | - Zhigang Li
- School of Life Sciences, Henan Institute of Science and Technology, 90 Hualan Road, Xinxiang, 453003, Henan, China.
| |
Collapse
|
2
|
Lima A, Arruda F, Janeiro A, Medeiros J, Baptista J, Madruga J, Lima E. Biological activities of organic extracts and specialized metabolites from different parts of Cryptomeria japonica (Cupressaceae) - A critical review. PHYTOCHEMISTRY 2023; 206:113520. [PMID: 36544302 DOI: 10.1016/j.phytochem.2022.113520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Forest operations and wood industry generate large amounts of residues that are discarded in the field and cause environmental pollution. However, these biomass residues are still raw materials to obtain value-added products, such as essential oils, organic/aqueous extracts and resins that are among the great natural sources of bioactive metabolites. Thus, in recent years, the scientific community is giving special attention to their valorization. To date, different uses of biomass residues have been proposed, such as a source of renewable energy, fertilizers, animal feed and bioactive molecules. In this context, Cryptomeria japonica biomass residues (e.g., bark and its exudate, heartwood, sapwood, leaves, cones and roots) represent a source of diverse specialized metabolites (e.g., sesqui-, di-, tri- and sesquarterpenes, flavonoids, lignans and norlignans) with potential application in different fields, particularly in the agrochemical, food, cosmeceutical, pharmaceutical, phytomedicine and esthetic, due to their valuable multi-bioactivities determined over the last decades. Thus, this review provides an overview of the reported biological activities of organic extracts/fractions and their specialized metabolites obtained from different parts of C. japonica, in order to encourage the alternative uses of C. japonica wastes/byproducts, and implement a sustainable and circular bioeconomy.
Collapse
Affiliation(s)
- Ana Lima
- Department of Physics, Chemistry and Engineering, Faculty of Science and Technology, University of Azores, 9500-321 Ponta Delgada, São Miguel, Azores, Portugal; Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal
| | - Filipe Arruda
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal; Department of Biology, Faculty of Science and Technology, University of Azores, 9500-321 Ponta Delgada, São Miguel, Azores, Portugal
| | - Alexandre Janeiro
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal; Department of Biology, Faculty of Science and Technology, University of Azores, 9500-321 Ponta Delgada, São Miguel, Azores, Portugal
| | - Jorge Medeiros
- Department of Physics, Chemistry and Engineering, Faculty of Science and Technology, University of Azores, 9500-321 Ponta Delgada, São Miguel, Azores, Portugal; Biotechnology Centre of Azores (CBA), University of Azores, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal
| | - José Baptista
- Department of Physics, Chemistry and Engineering, Faculty of Science and Technology, University of Azores, 9500-321 Ponta Delgada, São Miguel, Azores, Portugal; Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal
| | - João Madruga
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal; Department of Agricultural Sciences, University of the Azores, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal
| | - Elisabete Lima
- Department of Physics, Chemistry and Engineering, Faculty of Science and Technology, University of Azores, 9500-321 Ponta Delgada, São Miguel, Azores, Portugal; Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9700-042 Angra do Heroísmo, Terceira, Azores, Portugal.
| |
Collapse
|