1
|
Vilca-Machaca LS, Calvay-Sanchez KD, Zarate-Sulca Y, Jimenez-Vasquez V, Ramirez P, Mendoza-Mujica G. Baculovirus-Assisted Production of Bartonella bacilliformis Proteins: A Potential Strategy for Improving Serological Diagnosis of Carrion's Disease. Pathogens 2024; 13:690. [PMID: 39204290 PMCID: PMC11357310 DOI: 10.3390/pathogens13080690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 09/03/2024] Open
Abstract
Carrion's disease, caused by Bartonella bacilliformis, is a neglected tropical disease prevalent in the Andean region of South America. Without antimicrobial treatment, this disease has a mortality rate of up to 88% in infected patients. The most common method for diagnosing B. bacilliformis infection is serological testing. However, the current serological assays are limited in sensitivity and specificity, underscoring the need for the development of novel and more accurate diagnostic tools. Recombinant proteins have emerged as promising candidates to improve the serological diagnosis of Carrion's disease. So, we focused on evaluating the conditions for producing two previously predicted proteins of B. bacilliformis using the baculovirus-insect cell expression system, mainly the flashBAC ULTRA technology. We assessed various parameters to identify the conditions that yield the highest protein production, including cell lines, temperature, and hours post-infection (hpi). The results showed that the expression conditions for achieving the highest yields of the Prot_689 and Prot_504 proteins were obtained using High Five™ cells at 21 °C and harvesting at 120 hpi. Subsequently, the seroreactivity of recombinant proteins was evaluated using positive sera from patients diagnosed with Carrion's disease. These findings offer valuable insights into the production conditions of B. bacilliformis recombinant proteins using the baculovirus system, which could significantly contribute to developing more precise diagnostic tools for Carrion's disease. Therefore, this research provides implications for improving diagnostics and potentially developing therapeutic strategies.
Collapse
Affiliation(s)
- Lizbeth Sally Vilca-Machaca
- Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
- Laboratory of Vector-Borne and Zoonotic Bacterial Diseases, National Institute of Health, Lima 15072, Peru
| | | | - Yanina Zarate-Sulca
- Laboratory of Vector-Borne and Zoonotic Bacterial Diseases, National Institute of Health, Lima 15072, Peru
| | - Victor Jimenez-Vasquez
- Laboratory of Vector-Borne and Zoonotic Bacterial Diseases, National Institute of Health, Lima 15072, Peru
| | - Pablo Ramirez
- Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - Giovanna Mendoza-Mujica
- Laboratory of Vector-Borne and Zoonotic Bacterial Diseases, National Institute of Health, Lima 15072, Peru
| |
Collapse
|
2
|
Targeted Metabolic Analysis and MFA of Insect Cells Expressing Influenza HA-VLP. Processes (Basel) 2022. [DOI: 10.3390/pr10112283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Virus-like particles (VLPs) are versatile vaccine carriers for conferring broad protection against influenza by enabling high-level display of multiple hemagglutinin (HA) strains within the same particle construct. The insect cell-baculovirus expression vector system (IC-BEVS) is amongst the most suitable platforms for VLP expression; however, productivities vary greatly with particle complexity (i.e., valency) and the HA strain(s) to be expressed. Understanding the metabolic signatures of insect cells producing different HA-VLPs could help dissect the factors contributing to such fluctuations. In this study, the metabolic traces of insect cells during production of HA-VLPs with different valences and comprising HA strains from different groups/subtypes were assessed using targeted metabolic analysis and metabolic flux analysis. A total of 27 different HA-VLP variants were initially expressed, with titers varying from 32 to 512 HA titer/mL. Metabolic analysis of cells during the production of a subset of HA-VLPs distinct for each category (i.e., group 1 vs. 2, monovalent vs. multivalent) revealed that (i) expression of group-2 VLPs is more challenging than for group-1 ones; (ii) higher metabolic rates are not correlated with higher VLP expression; and (iii) specific metabolites (besides glucose and glutamine) are critical for central carbon metabolism during VLPs expression, e.g., asparagine, serine, glycine, and leucine. Principal component analysis of specific production/consumption rates suggests that HA group/subtype, rather than VLP valency, is the driving factor leading to differences during influenza HA-VLPs production. Nonetheless, no apparent correlation between a given metabolic footprint and expression of specific HA variant and/or VLP design could be derived. Overall, this work gives insights on the metabolic profile of insect High Five cells during the production of different HA-VLPs variants and highlights the importance of understanding the metabolic mechanisms that may play a role on this system’s productivity.
Collapse
|
3
|
Ashizawa R, Rubio N, Letcher S, Parkinson A, Dmitruczyk V, Kaplan DL. Entomoculture: A Preliminary Techno-Economic Assessment. Foods 2022; 11:foods11193037. [PMID: 36230118 PMCID: PMC9564176 DOI: 10.3390/foods11193037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Cultured meat, or the practice of growing meat from cell culture, has been experiencing rapid advances in research and technology as the field of biotechnology attempts to answer the call to fight climate change and feed a growing global population. A major hurdle for cell-based meat products entering the market in the near-future is their price. The complex production facilities required to make such products will require advanced bioreactor systems, resources such as energy and water, and a skilled labor force, among other factors. The use of insect cells in this process is hypothesized to address some of these costs due to the characteristics that make them more resilient in cell culture when compared to traditional livestock-derived cells. To address the potential for cost savings by utilizing insect cells in the cultivation of protein-enriched foods, here we utilized a techno-economic assessment model. Three different insect cell lines were used in the model. The results indicate that insect cell lines offer potential to significantly reduce the cost per kilogram of cell cultivated meat, along with further opportunities to optimize production processes through technological advances and scaling.
Collapse
Affiliation(s)
- Reina Ashizawa
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Natalie Rubio
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Sophia Letcher
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Avery Parkinson
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Correspondence:
| |
Collapse
|
4
|
Abarghooi Kahaki F, Monzavi S, Bamehr H, Bandani E, Payandeh Z, Jahangiri A, Khalili S. Expression and Purification of Membrane Proteins in Different Hosts. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-10009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Bioreactor-Based Antigen Production Process Using the Baculovirus Expression Vector System. Methods Mol Biol 2020. [PMID: 32959243 DOI: 10.1007/978-1-0716-0795-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Several vaccines are already produced using the baculovirus expression vector system (BEVS). This chapter describes methods for generating recombinant baculoviral DNA (also called bacmid) for cultivating Spodoptera frugiperda Sf-9 cells and producing a baculovirus stock from the recombinant bacmid and for producing a protein-based vaccine with the BEVS in a stirred tank reactor.
Collapse
|
6
|
Hu Y, Xu R, He Y, Zhao Z, Mao X, Lin L, Hu J. Downregulation of microRNA‑106a‑5p alleviates ox‑LDL‑mediated endothelial cell injury by targeting STAT3. Mol Med Rep 2020; 22:783-791. [PMID: 32626987 PMCID: PMC7339537 DOI: 10.3892/mmr.2020.11147] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022] Open
Abstract
The apoptosis of endothelial cells (ECs) induced by oxidized low-density lipoprotein (ox-LDL) is an important contributing factor in the pathogenesis of atherosclerosis. It has been reported that microRNA (miR)-106a-5p is overexpressed in atherosclerotic plaques and involved in angiogenesis. However, its role and underlying mechanisms in ox-LDL induced EC apoptosis remain to be fully understood. In the present study the expression of miR-106a-5p in human umbilical vein ECs (HUVECs) stimulated with ox-LDL was investigated using reverse transcription-quantitative PCR analysis. Cell viability and apoptosis were assessed by MTT assay and flow cytometry, respectively. Caspase-3 activity and reactive oxygen species (ROS) levels were determined by commercial kits. The interaction between miR-106a-5p and signal transducer and activator of transcription 3 (STAT3) mRNA was examined by luciferase reporter assay. It was found that ox-LDL treatment significantly increased the levels of miR-106a-5p in a dose-dependent manner in HUVECs. Moreover, these results demonstrated that ox-LDL treatment inhibited cell viability, promoted cell apoptosis, increased caspase-3 activity and ROS levels, whereas inhibition of miR-106a-5p reversed the effects of ox-LDL on HUVECs. In addition, it was shown that STAT3 is a direct target of miR-106a-5p in HUVECs, and silencing of STAT3 impaired the protective effects of miR-106a-5p inhibition on cell apoptosis and oxidative injury induced by ox-LDL. Collectively, these results indicated that miR-106a-5p participated in ox-LDL-stimulated apoptosis and oxidative injury in HUVECs by regulating STAT3. Thus, suggesting that miR-106a-5p/STAT3 may serve as a novel therapeutic target for atherosclerosis in the future.
Collapse
Affiliation(s)
- Ying Hu
- Department of Geriatrics, The Central Hospital of Xuhui District, Shanghai 200031, P.R. China
| | - Rong Xu
- Department of Geriatrics, The Central Hospital of Xuhui District, Shanghai 200031, P.R. China
| | - Yue He
- Department of Cardiology, The Central Hospital of Xuhui District, Shanghai 200031, P.R. China
| | - Zhibo Zhao
- Department of Cardiology, The Central Hospital of Xuhui District, Shanghai 200031, P.R. China
| | - Xudong Mao
- Department of Geriatrics, The Central Hospital of Xuhui District, Shanghai 200031, P.R. China
| | - Ling Lin
- Department of Geriatrics, The Central Hospital of Xuhui District, Shanghai 200031, P.R. China
| | - Jun Hu
- Department of Geriatrics, The Central Hospital of Xuhui District, Shanghai 200031, P.R. China
| |
Collapse
|
7
|
Weidner T, Druzinec D, Mühlmann M, Buchholz R, Czermak P. The components of shear stress affecting insect cells used with the baculovirus expression vector system. ACTA ACUST UNITED AC 2018; 72:429-439. [PMID: 28822988 DOI: 10.1515/znc-2017-0066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023]
Abstract
Insect-based expression platforms such as the baculovirus expression vector system (BEVS) are widely used for the laboratory- and industrial-scale production of recombinant proteins. Thereby, major drawbacks to gain high-quality proteins are the lytic infection cycle and the shear sensitivity of infected insect cells due to turbulence and aeration. Smaller bubbles were formerly assumed to be more harmful than larger ones, but we found that cell damage is also dependent on the concentration of protective agents such as Pluronic®. At the appropriate concentration, Pluronic forms a layer around air bubbles and hinders the attachment of cells, thus limiting the damage. In this context, we used microaeration to vary bubble sizes and confirmed that size is not the most important factor, but the total gas surface area in the reactor is. If the surface area exceeds a certain threshold, the concentration of Pluronic is no longer sufficient for cell protection. To investigate the significance of shear forces, a second study was carried out in which infected insect cells were cultivated in a hollow fiber module to protect them from shear forces. Both model studies revealed important aspects of the design and scale-up of BEVS processes for the production of recombinant proteins.
Collapse
|
8
|
Bi Z, Zhu Y, Chen Z, Li C, Wang Y, Wang G, Liu G. Induction of a robust immunity response against novel duck reovirus in ducklings using a subunit vaccine of sigma C protein. Sci Rep 2016; 6:39092. [PMID: 27974824 PMCID: PMC5156932 DOI: 10.1038/srep39092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/16/2016] [Indexed: 12/17/2022] Open
Abstract
Novel duck reovirus (NDRV) disease emerged in China in 2011 and continues to cause high morbidity and about 5.0 to 50% mortality in ducklings. Currently there are no approved vaccines for the virus. This study aimed to assess the efficacy of a new vaccine created from the baculovirus and sigma C gene against NDRV. In this study, a recombinant baculovirus containing the sigma C gene was constructed, and the purified protein was used as a vaccine candidate in ducklings. The efficacy of sigma C vaccine was estimated according to humoral immune responses, cellular immune response and protection against NDRV challenge. The results showed that sigma C was highly expressed in Sf9 cells. Robust humoral and cellular immune responses were induced in all ducklings immunized with the recombinant sigma C protein. Moreover, 100% protection against lethal challenge with NDRV TH11 strain was observed. Summary, the recombinant sigma C protein could be utilized as a good candidate against NDRV infection.
Collapse
Affiliation(s)
- Zhuangli Bi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yingqi Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongyan Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Chuanfeng Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yong Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guijun Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| |
Collapse
|
9
|
AYTEKİN Ö, DELİLOĞLU GÜRHAN Sİ, OHURA K, IMAI T, ÖNGEN G. Production of recombinant human dipeptidyl peptidase IV from Sf9cells in microbial fermenters. Turk J Biol 2016. [DOI: 10.3906/biy-1503-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|