1
|
Tsunoda Y, Yamano-Adachi N, Koga Y, Omasa T. Sar1A overexpression in Chinese hamster ovary cells and its effects on antibody productivity and secretion. J Biosci Bioeng 2024; 138:171-180. [PMID: 38806389 DOI: 10.1016/j.jbiosc.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
Chinese hamster ovary (CHO) cells are the most widely used for therapeutic antibody production. In cell line development, engineering secretion processes such as folding-related protein upregulation is an effective way of constructing cell lines with high recombinant protein productivity. However, there have been few studies on the transport of recombinant proteins between the endoplasmic reticulum (ER) and the Golgi apparatus. In this study, Sar1A, a protein involved in COPII vesicle formation, was focused on to improve antibody productivity by enhancing COPII vesicle-mediated antibody transport from the ER to the Golgi apparatus, and to clarify its effect on the secretion process. The constructed Sar1A-overexpressing CHO cell lines were batch-cultured, in which they showed an increased specific antibody production rate. The intracellular antibody accumulation and the specific localization of the intracellular antibodies were investigated by chase assay using a translation inhibitor and observed by immunofluorescence-based imaging analysis. The results showed that Sar1A overexpression reduced intracellular antibody accumulation, especially in the ER. The effects of the engineered antibody transport on the antibody's glycosylation profile and the unfolded protein response (UPR) pathway were analyzed by liquid chromatography-mass spectrometry and UPR-related gene expression evaluation, respectively. Sar1A overexpression lowered glycan galactosylation and induced a stronger UPR at the end of the batch culture. Sar1A overexpression enhanced the antibody productivity of CHO cells by modifying their secretion process. This approach could also contribute to the production of not only monoclonal antibodies but also other therapeutic proteins that require transport by COPII vesicles.
Collapse
Affiliation(s)
- Yu Tsunoda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noriko Yamano-Adachi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo 650-0047, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichi Koga
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Omasa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo 650-0047, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Zhang X, Wang Y, Yi D, Zhang C, Ning B, Fu Y, Jia Y, Wang T, Wang X. Synergistic promotion of transient transgene expression in CHO cells by PDI/XBP-1s co-transfection and mild hypothermia. Bioprocess Biosyst Eng 2024; 47:557-565. [PMID: 38416261 DOI: 10.1007/s00449-024-02987-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
Transient gene expression system is an important tool for rapid production of recombinant proteins in Chinese hamster ovary (CHO) cells. However, their low productivity is the main hurdle to overcome. An effective approach through which to obtain high protein yield involves targeting transcriptional, post-transcriptional events (PTEs), and culture conditions. Here, we investigated the effects of protein disulfide isomerase (PDI) and spliced X-box binding protein 1 (XBP-1s) co-overexpression combined with mild hypothermia on the transient yields of recombinant proteins in CHO cells. The results showed that the gene of interest (GOI) and the PDI/XBP-1s helper vector at a co-transfection ratio of 10:1 could obviously increase transient expression level of recombinant protein in CHO cells. However, PDI/XBP-1s overexpression had no significance effect on the mRNA levels of the recombinant protein, suggesting that it targeted PTEs. Moreover, the increased production was due to the enhancing of cell specific productivity, not related to cell growth, viability, and cell cycle. In addition, combined PDI/XBP-1s co-overexpression and mild hypothermia could further improve Adalimumab expression, compared to the control/37 °C and PDI/XBP-1s/37 °C, the Adalimumab volume yield of PDI/XBP-1s/33 °C increased by 203% and 142%, respectively. Mild hypothermia resulted in 3.52- and 2.33-fold increase in the relative mRNA levels of PDI and XBP-1s, respectively. In conclusion, the combination of PDI/XBP-1s overexpression and culture temperature optimization can achieve higher transient expression of recombinant protein, which provides a synergetic strategy to improve transient production of recombinant protein in CHO cells.
Collapse
Affiliation(s)
- Xi Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yaokun Wang
- The School of Medical Humanities, Xinxiang Medical University, Xinxiang, 453003, China
| | - Dandan Yi
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Chi Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Binhuan Ning
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yushun Fu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yanlong Jia
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tianyun Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Xiaoyin Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
3
|
Kirimoto Y, Yamano-Adachi N, Koga Y, Omasa T. Effect of co-overexpression of the cargo receptor ERGIC-53/MCFD2 on antibody production and intracellular IgG secretion in recombinant Chinese hamster ovary cells. J Biosci Bioeng 2023; 136:400-406. [PMID: 35963666 DOI: 10.1016/j.jbiosc.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Therapeutic antibodies are attractive biopharmaceuticals because of their high therapeutic effects, fewer side effects, and prolonged half-life in the blood. Chinese hamster ovary (CHO) cells are the most widely used host cell lines to produce therapeutic antibodies in industries. High-producing recombinant CHO cells can be established via overexpression of endogenous proteins. In this study, we focused on the intracellular traffic of an antibody-producing CHO cell line, CHO-HcD6. Assembled antibodies were accumulated in the endoplasmic reticulum (ER) in the cell. We hypothesized that the accumulation was due to the insufficient number of cargo receptors in the cell and focused on a cargo receptor, the ERGIC-53-MCFD2 complex, which transports expressed proteins from the ER to the Golgi apparatus. Overexpression of the cargo receptor transport was expected to improve antibody production. Exogenous ERGIC-53 and MCFD2 were transfected into CHO-HcD6 cells, and overexpressing CHO-HcD6 cells were constructed. As a result of overexpression, antibody productivity increased in batch cultivation. However, the chase assay results and immunofluorescence microscopic observations revealed intracellular IgG accumulation in the overexpressing cells. These results suggest that overexpression of cargo receptors not only promoted extracellular secretion but also enhanced the retention of intracellular antibodies.
Collapse
Affiliation(s)
- Yutaka Kirimoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noriko Yamano-Adachi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo 650-0047, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichi Koga
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Omasa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo 650-0047, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
4
|
Spatial Proteomics Reveals Differences in the Cellular Architecture of Antibody-Producing CHO and Plasma Cell-Derived Cells. Mol Cell Proteomics 2022; 21:100278. [PMID: 35934186 PMCID: PMC9562429 DOI: 10.1016/j.mcpro.2022.100278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 01/18/2023] Open
Abstract
Most of the recombinant biotherapeutics employed today to combat severe illnesses, for example, various types of cancer or autoimmune diseases, are produced by Chinese hamster ovary (CHO) cells. To meet the growing demand of these pharmaceuticals, CHO cells are under constant development in order to enhance their stability and productivity. The last decades saw a shift from empirical cell line optimization toward rational cell engineering using a growing number of large omics datasets to alter cell physiology on various levels. Especially proteomics workflows reached new levels in proteome coverage and data quality because of advances in high-resolution mass spectrometry instrumentation. One type of workflow concentrates on spatial proteomics by usage of subcellular fractionation of organelles with subsequent shotgun mass spectrometry proteomics and machine learning algorithms to determine the subcellular localization of large portions of the cellular proteome at a certain time point. Here, we present the first subcellular spatial proteome of a CHO-K1 cell line producing high titers of recombinant antibody in comparison to the spatial proteome of an antibody-producing plasma cell-derived myeloma cell line. Both cell lines show colocalization of immunoglobulin G chains with chaperones and proteins associated in protein glycosylation within the endoplasmic reticulum compartment. However, we report differences in the localization of proteins associated to vesicle-mediated transport, transcription, and translation, which may affect antibody production in both cell lines. Furthermore, pairing subcellular localization data with protein expression data revealed elevated protein masses for organelles in the secretory pathway in plasma cell-derived MPC-11 (Merwin plasma cell tumor-11) cells. Our study highlights the potential of subcellular spatial proteomics combined with protein expression as potent workflow to identify characteristics of highly efficient recombinant protein-expressing cell lines. Data are available via ProteomeXchange with identifier PXD029115.
Collapse
|
5
|
Malm M, Kuo CC, Barzadd MM, Mebrahtu A, Wistbacka N, Razavi R, Volk AL, Lundqvist M, Kotol D, Tegel H, Hober S, Edfors F, Gräslund T, Chotteau V, Field R, Varley PG, Roth RG, Lewis NE, Hatton D, Rockberg J. Harnessing secretory pathway differences between HEK293 and CHO to rescue production of difficult to express proteins. Metab Eng 2022; 72:171-187. [PMID: 35301123 PMCID: PMC9189052 DOI: 10.1016/j.ymben.2022.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/09/2022] [Accepted: 03/10/2022] [Indexed: 10/31/2022]
Abstract
Biologics represent the fastest growing group of therapeutics, but many advanced recombinant protein moieties remain difficult to produce. Here, we identify metabolic engineering targets limiting expression of recombinant human proteins through a systems biology analysis of the transcriptomes of CHO and HEK293 during recombinant expression. In an expression comparison of 24 difficult to express proteins, one third of the challenging human proteins displayed improved secretion upon host cell swapping from CHO to HEK293. Guided by a comprehensive transcriptomics comparison between cell lines, especially highlighting differences in secretory pathway utilization, a co-expression screening of 21 secretory pathway components validated ATF4, SRP9, JUN, PDIA3 and HSPA8 as productivity boosters in CHO. Moreover, more heavily glycosylated products benefitted more from the elevated activities of the N- and O-glycosyltransferases found in HEK293. Collectively, our results demonstrate the utilization of HEK293 for expression rescue of human proteins and suggest a methodology for identification of secretory pathway components for metabolic engineering of HEK293 and CHO.
Collapse
Affiliation(s)
- Magdalena Malm
- Dept. of Protein Science, KTH - Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Chih-Chung Kuo
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, CA, 92093, USA
| | - Mona Moradi Barzadd
- Dept. of Protein Science, KTH - Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Aman Mebrahtu
- Dept. of Protein Science, KTH - Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Num Wistbacka
- Dept. of Protein Science, KTH - Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Ronia Razavi
- Dept. of Protein Science, KTH - Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Anna-Luisa Volk
- Dept. of Protein Science, KTH - Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Magnus Lundqvist
- Dept. of Protein Science, KTH - Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - David Kotol
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, 171 65, Sweden
| | - Hanna Tegel
- Dept. of Protein Science, KTH - Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Sophia Hober
- Dept. of Protein Science, KTH - Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Fredrik Edfors
- Science for Life Laboratory, KTH - Royal Institute of Technology, Solna, 171 65, Sweden
| | - Torbjörn Gräslund
- Dept. of Protein Science, KTH - Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Veronique Chotteau
- Dept. of Industrial Biotechnology, KTH - Royal Institute of Technology, Stockholm, SE-10691, Sweden
| | - Ray Field
- Cell Culture and Fermentation Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Paul G Varley
- Cell Culture and Fermentation Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Robert G Roth
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Nathan E Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, CA, 92093, USA.
| | - Diane Hatton
- Cell Culture and Fermentation Sciences, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Johan Rockberg
- Dept. of Protein Science, KTH - Royal Institute of Technology, Stockholm, SE-106 91, Sweden.
| |
Collapse
|
6
|
Electrospun Nanofibrous Membranes for Tissue Engineering and Cell Growth. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156929] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In biotechnology, the field of cell cultivation is highly relevant. Cultivated cells can be used, for example, for the development of biopharmaceuticals and in tissue engineering. Commonly, mammalian cells are grown in bioreactors, T-flasks, well plates, etc., without a specific substrate. Nanofibrous mats, however, have been reported to promote cell growth, adhesion, and proliferation. Here, we give an overview of the different attempts at cultivating mammalian cells on electrospun nanofiber mats for biotechnological and biomedical purposes. Starting with a brief overview of the different electrospinning methods, resulting in random or defined fiber orientations in the nanofiber mats, we describe the typical materials used in cell growth applications in biotechnology and tissue engineering. The influence of using different surface morphologies and polymers or polymer blends on the possible application of such nanofiber mats for tissue engineering and other biotechnological applications is discussed. Polymer blends, in particular, can often be used to reach the required combination of mechanical and biological properties, making such nanofiber mats highly suitable for tissue engineering and other biotechnological or biomedical cell growth applications.
Collapse
|
7
|
Violacein improves recombinant IgG production by controlling the cell cycle of Chinese hamster ovary cells. Cytotechnology 2020; 73:319-332. [PMID: 34149168 DOI: 10.1007/s10616-020-00434-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/28/2020] [Indexed: 10/22/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are used as host cells for industrial monoclonal antibody (mAb) production. Cell cycle control is an effective approach to increase mAb production in the cell culture. Violacein, a purple-colored pigment produced by microorganisms, has diverse bioactive properties and has been proposed for various industrial applications. In this study, we evaluated the potency of violacein for cell cycle control and improvement of recombinant immunoglobulin G (IgG) production in CHO cells. Compared with the control, 0.9 μM violacein in a 14-day fed-batch culture increased the maximum IgG concentration by 37.6% via increasing the specific production rate and cell longevity. Cell cycle analysis showed that violacein induced G1 and G2/M phase arrest. However, the G1 arrest was observed only on day 1, while G2/M arrest lasted more than 3 days, suggesting that G2/M arrest mediated the violacein-induced enhanced IgG production. Moreover, in line with the increased protein expression, the expression levels of IgG mRNA and nutrient metabolic rates were also increased. N-Linked glycosylation and charge variant profiles were barely affected by violacein treatment. Our results indicate that violacein affects the cell cycle of CHO cells and increases IgG production without changing product quality, showing promise as a mAb production enhancer in CHO cells. The study provides insight into violacein utilization in industrial mAb manufacturing and can help develop advanced, effective mAb production technologies using CHO cell cultures.
Collapse
|
8
|
Berger A, Le Fourn V, Masternak J, Regamey A, Bodenmann I, Girod P, Mermod N. Overexpression of transcription factor Foxa1 and target genes remediate therapeutic protein production bottlenecks in Chinese hamster ovary cells. Biotechnol Bioeng 2020; 117:1101-1116. [PMID: 31956982 PMCID: PMC7079004 DOI: 10.1002/bit.27274] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/27/2019] [Accepted: 01/12/2020] [Indexed: 12/13/2022]
Abstract
Despite extensive research conducted to increase protein production from Chinese hamster ovary (CHO) cells, cellular bottlenecks often remain, hindering high yields. In this study, a transcriptomic analysis led to the identification of 32 genes that are consistently upregulated in high producer clones and thus might mediate high productivity. Candidate genes were associated with functions such as signaling, protein folding, cytoskeleton organization, and cell survival. We focused on two engineering targets, Erp27, which binds unfolded proteins and the Erp57 disulfide isomerase in the endoplasmic reticulum, and Foxa1, a pioneering transcription factor involved in organ development. Erp27 moderate overexpression increased production of an easy-to-express antibody, whereas Erp27 and Erp57 co-overexpression increased cell density, viability, and the yield of difficult-to-express proteins. Foxa1 overexpression increased cell density, cell viability, and easy- and difficult-to-express protein yields, whereas it decreased reactive oxygen species late in fed-batch cultures. Foxa1 overexpression upregulated two other candidate genes that increased the production of difficult- and/or easy-to-express proteins, namely Ca3, involved in protecting cells from oxidative stress, and Tagap, involved in signaling and cytoskeleton remodeling. Overall, several genes allowing to overcome CHO cell bottlenecks were identified, including Foxa1, which mediated multiple favorable metabolic changes that improve therapeutic protein yields.
Collapse
Affiliation(s)
- Audrey Berger
- Department of Fundamental Microbiology, Institute of BiotechnologyUniversity of LausanneLausanneSwitzerland
- Present address: Laboratory of Microsystems LMIS4Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | | | - Jacqueline Masternak
- Department of Fundamental Microbiology, Institute of BiotechnologyUniversity of LausanneLausanneSwitzerland
| | | | | | | | - Nicolas Mermod
- Department of Fundamental Microbiology, Institute of BiotechnologyUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
9
|
Wehlage D, Blattner H, Mamun A, Kutzli I, Diestelhorst E, Rattenholl A, Gudermann F, Lütkemeyer D, Ehrmann A. Cell growth on electrospun nanofiber mats from polyacrylonitrile (PAN) blends. AIMS BIOENGINEERING 2020. [DOI: 10.3934/bioeng.2020004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
10
|
Chevallier V, Andersen MR, Malphettes L. Oxidative stress-alleviating strategies to improve recombinant protein production in CHO cells. Biotechnol Bioeng 2019; 117:1172-1186. [PMID: 31814104 PMCID: PMC7078918 DOI: 10.1002/bit.27247] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 11/11/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022]
Abstract
Large scale biopharmaceutical production of biologics relies on the overexpression of foreign proteins by cells cultivated in stirred tank bioreactors. It is well recognized and documented fact that protein overexpression may impact host cell metabolism and that factors associated with large scale culture, such as the hydrodynamic forces and inhomogeneities within the bioreactors, may promote cellular stress. The metabolic adaptations required to support the high‐level expression of recombinant proteins include increased energy production and improved secretory capacity, which, in turn, can lead to a rise of reactive oxygen species (ROS) generated through the respiration metabolism and the interaction with media components. Oxidative stress is defined as the imbalance between the production of free radicals and the antioxidant response within the cells. Accumulation of intracellular ROS can interfere with the cellular activities and exert cytotoxic effects via the alternation of cellular components. In this context, strategies aiming to alleviate oxidative stress generated during the culture have been developed to improve cell growth, productivity, and reduce product microheterogeneity. In this review, we present a summary of the different approaches used to decrease the oxidative stress in Chinese hamster ovary cells and highlight media development and cell engineering as the main pathways through which ROS levels may be kept under control.
Collapse
Affiliation(s)
- Valentine Chevallier
- Upstream Process Sciences, Biotech Sciences, UCB Nordic A/S, Copenhagen, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
11
|
Capella Roca B, Alarcón Miguez A, Keenan J, Suda S, Barron N, O’Gorman D, Doolan P, Clynes M. Zinc supplementation increases protein titer of recombinant CHO cells. Cytotechnology 2019; 71:915-924. [PMID: 31396753 PMCID: PMC6787129 DOI: 10.1007/s10616-019-00334-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022] Open
Abstract
In order to study the impact of zinc and copper on the titer levels of mAb and recombinant protein in CHO cells, the IgG-expressing (DP12) and EPO-expressing (SK15) cell lines were cultured in chemically defined media with increasing concentrations of either metal. Supplementation with 25 mg/l in CDM media resulted in a significant increase in EPO (1.7-fold) and IgG (2.6-fold) titers compared to control (no added zinc). Titers at this Zn concentration in CDM containing the insulin replacing agent aurintricarboxylic acid (ATA) (CDM + A) showed a 1.8-fold (EPO) and 1.2-fold (IgG) titers increase compared to control. ATA appeared to also reduce the specific productivity (Qp) enhancement induced by Zn-25, with up to 4.9-fold (DP12) and 1.9-fold (SK15) Qp increase in CDM compared to the 1.6-fold (DP12) and 1.5-fold (SK15) Qp increase observed in CDM + A. A 31% reduced Viable Cell Density (VCD) in DP12 was observed in both Zn-supplemented media (3 × 106 cells/ml vs 4.2 × 106 cells/ml, day 5), whereas SK15 Zn-25 cultures displayed a 24% lower peak only in CDM + A (2.2 × 106 cells/ml vs 3.2 × 106 cells/ml, day 5). Supplementation with copper at 13.7-20 mg/l resulted in less significant cell line/product-type dependent effects on titer, VCD and Viability. Analysis of the energetic phenotype of both cell lines in 25 mg/l Zn-supplemented CDM media revealed a twofold increase in the oxygen consumption rate (OCR) compared to non-supplemented cells. Together, these data suggest that high zinc supplementation may induce an increase in oxidative respiration metabolism that results in increased Qp and titers in suspension CHO cultures.
Collapse
Affiliation(s)
- Berta Capella Roca
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
- SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Dublin 9, Ireland
| | - Antonio Alarcón Miguez
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Joanne Keenan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
- SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Dublin 9, Ireland
| | - Srinivas Suda
- National Institute for Bioprocessing Research and Training, University College Dublin, Dublin, Ireland
| | - Niall Barron
- SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Dublin 9, Ireland
- National Institute for Bioprocessing Research and Training, University College Dublin, Dublin, Ireland
| | - Donal O’Gorman
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Padraig Doolan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
- SSPC-SFI, Centre for Pharmaceuticals, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
12
|
Gutiérrez-González M, Latorre Y, Zúñiga R, Aguillón JC, Molina MC, Altamirano C. Transcription factor engineering in CHO cells for recombinant protein production. Crit Rev Biotechnol 2019; 39:665-679. [PMID: 31030575 DOI: 10.1080/07388551.2019.1605496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The continuous increase of approved biopharmaceutical products drives the development of more efficient recombinant protein expression systems. Chinese hamster ovary (CHO) cells are the mainstay for this purpose but have some drawbacks, such as low levels of expression. Several strategies have been applied to increase the productivity of CHO cells with different outcomes. Transcription factor (TF) engineering has emerged as an interesting and successful approach, as these proteins can act as master regulators; the expression and function of a TF can be controlled by small molecules, and it is possible to design tailored TFs and promoters with desired features. To date, the majority of studies have focused on the use of TFs with growth, metabolic, cell cycle or endoplasmic reticulum functions, although there is a trend to develop new, synthetic TFs. Moreover, new synthetic biological approaches are showing promising advances for the development of specific TFs, even with tailored ligand sensitivity. In this article, we summarize the strategies to increase recombinant protein expression by modulating and designing TFs and with advancements in synthetic biology. We also illustrate how this class of proteins can be used to develop more robust expression systems.
Collapse
Affiliation(s)
| | - Yesenia Latorre
- b Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso , Valparaíso , Chile
| | - Roberto Zúñiga
- a Centro de InmunoBiotecnología, Universidad de Chile , Santiago , Chile
| | | | | | - Claudia Altamirano
- b Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso , Valparaíso , Chile
| |
Collapse
|
13
|
Kaneyoshi K, Kuroda K, Uchiyama K, Onitsuka M, Yamano-Adachi N, Koga Y, Omasa T. Secretion analysis of intracellular "difficult-to-express" immunoglobulin G (IgG) in Chinese hamster ovary (CHO) cells. Cytotechnology 2019; 71:305-316. [PMID: 30637508 DOI: 10.1007/s10616-018-0286-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022] Open
Abstract
The Chinese hamster ovary (CHO) cell line is the most widely used host cell for therapeutic antibody production. Although its productivity has been improved by various strategies to satisfy the growing global demand, some difficult-to-express (DTE) antibodies remain at low secretion levels. To improve the production of various therapeutic antibodies, it is necessary to determine possible rate-limiting steps in DTE antibody secretion in comparison with other high IgG producers. Here, we analyzed the protein secretion process in CHO cells producing the DTE immunoglobulin G (IgG) infliximab. The results from chase assays using a translation inhibitor revealed that infliximab secretion could be nearly completed within 2 h, at which time the cells still retained about 40% of heavy chains and 65% of light chains. Using fluorescent microscopy, we observed that these IgG chains remained in the endoplasmic reticulum and Golgi apparatus. The cells inefficiently form fully assembled heterodimer IgG by making LC aggregates, which may be the most serious bottleneck in the production of DTE infliximab compared with other IgG high producers. Our study could contribute to establish the common strategy for constructing DTE high-producer cells on the basis of rate-limiting step analysis.
Collapse
Affiliation(s)
- Kohei Kaneyoshi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Kouki Kuroda
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Keiji Uchiyama
- The Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 7708503, Japan
| | - Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima, Tokushima, Tokushima, 7708513, Japan.,Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo, 6500047, Japan
| | - Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan.,Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo, 6500047, Japan
| | - Yuichi Koga
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 5650871, Japan. .,Manufacturing Technology Association of Biologics, 7-1-49 Minatojima-minami, Kobe, Hyogo, 6500047, Japan.
| |
Collapse
|
14
|
Kaneyoshi K, Uchiyama K, Onitsuka M, Yamano N, Koga Y, Omasa T. Analysis of intracellular IgG secretion in Chinese hamster ovary cells to improve IgG production. J Biosci Bioeng 2019; 127:107-113. [DOI: 10.1016/j.jbiosc.2018.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/08/2018] [Accepted: 06/20/2018] [Indexed: 02/03/2023]
|
15
|
Onitsuka M, Kadoya Y, Omasa T. Secretory leakage of IgG1 aggregates from recombinant Chinese hamster ovary cells. J Biosci Bioeng 2018; 127:752-757. [PMID: 30580968 DOI: 10.1016/j.jbiosc.2018.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022]
Abstract
Aggregation of therapeutic antibodies is one of the most important issues to be resolved in manufacturing processes because of reduced efficacy and immunogenicity. Despite aggregation studies in vitro, little is known about the aggregation mechanism in cell culture processes. In this study, we investigated the process of aggregate formation of IgG1 antibodies during the culture of Chinese hamster ovary (CHO) cells to determine how aggregation occurs. A recombinant CHO cell line was cultivated in a bioreactor, and purified IgG1 from daily culture supernatants was analyzed by size exclusion chromatography. We found a linear correlation between the peak plots of IgG1 by-products, dimeric and aggregated IgG1, and integrated viable cell density, indicating that these by-products were secreted from CHO cells at a constant secretion rate. In addition, aggregate formation was not reproduced in pseudo-culture experiments, and the solution structures of intracellular and extracellular IgG1 aggregates were similar. These results support the concept of secretory leakage of IgG1 by-products. Secreted aggregates appeared to be in an alternatively folded state, which can pass through the protein quality control system in mammalian cells.
Collapse
Affiliation(s)
- Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan.
| | - Yukinori Kadoya
- Graduate School of Advanced Technology and Science, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8506, Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, U1E-801, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Baek E, Lee JS, Lee GM. Untangling the mechanism of 3‐methyladenine in enhancing the specific productivity: Transcriptome analysis of recombinant Chinese hamster ovary cells treated with 3‐methyladenine. Biotechnol Bioeng 2018; 115:2243-2254. [DOI: 10.1002/bit.26777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/05/2018] [Accepted: 06/21/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Eric Baek
- Department of Biological SciencesKAISTDaejeon Republic of Korea
| | - Jae Seong Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkKgs. Lyngby Denmark
- Department of Molecular Science and TechnologyAjou UniversitySuwon Republic of Korea
| | - Gyun Min Lee
- Department of Biological SciencesKAISTDaejeon Republic of Korea
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkKgs. Lyngby Denmark
| |
Collapse
|
17
|
Wang W, Zheng W, Hu F, He X, Wu D, Zhang W, Liu H, Ma X. Enhanced Biosynthesis Performance of Heterologous Proteins in CHO-K1 Cells Using CRISPR-Cas9. ACS Synth Biol 2018; 7:1259-1268. [PMID: 29683658 DOI: 10.1021/acssynbio.7b00375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chinese hamster ovary (CHO) cells are the famous expression system for industrial production of recombinant proteins, such as therapeutic antibodies. However, there still remain bottlenecks in protein quality and weakness in expression efficiency because of the intrinsic genetic properties of the cell. Here we have enhanced biosynthesis performance of heterologous proteins in CHO-K1 cells using CRISPR-Cas9 by editing the genome precisely with two genes for improving ER microenvironment and reinforcing antiapoptotic ability. A linear donor plasmid harboring eGFP-HsQSOX1b and Survivin genes was knocked in specific locus in CHO-K1 genome by the CRISPR-Cas9 RNA guided nucleases via NHEJ with efficiencies of up to 3.85% in the CHO-K1 cell pools following FACS, and the hQSOX1 and hSurvivin genes were integrated into expected genome locus successfully. Compared with control, the antiapoptotic viability of edited CHO-K1 cells was increased by 6.40 times, and the yield has been raised by 5.55 times with GLuc as model protein. The possible molecular mechanisms and pathways of remarkable antiapoptotic ability and protein biosynthesis in modified CHO-K1 cells have been elucidated reasonably. In conclusion, the novel ideas and reliable techniques for obtaining foreign proteins more efficiently in engineered animal cells were very valuable to meet large clinical needs.
Collapse
Affiliation(s)
- Wenpeng Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Fengzhi Hu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiujuan He
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | - Dong Wu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wenliang Zhang
- Center of Translational Biomedical Research, University of North Carolina at Greensboro, Greensboro, North Carolina 27310, United States
| | - Haipeng Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, PR China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
18
|
Maldonado-Agurto R, Dickson AJ. Multiplexed Digital mRNA Expression Analysis Profiles System-Wide Changes in mRNA Abundance and Responsiveness of UPR-Specific Gene Expression Changes During Batch Culture of Recombinant Chinese Hamster Ovary Cells. Biotechnol J 2018; 13:e1700429. [PMID: 29323465 DOI: 10.1002/biot.201700429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 01/03/2018] [Indexed: 01/04/2023]
Abstract
The unfolded protein response (UPR) signaling pathway is viewed as critical for setting the effectiveness of recombinant protein expression in CHO cells. In this study, Nanostring nCounter technology is used to study expression of a group of genes associated with cellular processes linked to UPR activation under ER stress and the changing environment of a batch culture. Time course induction of ER stress, using tunicamycin (TM), shows a group of genes such as Chop, Trb3, Sqstm1, Grp78, and Herpud1 respond rapidly to TM inhibition of N-glycosylation, while others such as Atf5, Odz4, and Birc5 exhibits a delayed response. In batch culture, expression of "classical" UPR markers only increases when cells enter decline phase. In addition to providing a detailed analysis of the expression of process-relevant UPR markers during batch culture and in response to imposed chemical stress, we also highlighted six genes (Herpud1, Odz4, Sqstm1, Trb3, Syvn1, and Birc5) associated with the perception of ER stress responses in recombinant CHO cells. Herpud1 (involved in ER-associated degradation) exhibits a rapid (primary) response to stress and its relationship (and that of the other five genes) to the overall cellular UPR may identify novel targets to modulate recombinant protein production in CHO cells.
Collapse
Affiliation(s)
- Rodrigo Maldonado-Agurto
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Univ. Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, P.O. Box, 8940577, Santiago, Chile
| | - Alan J Dickson
- The University of Manchester, Faculty of Life Sciences, Manchester Institute of Biotechnology, M1 7DN, Manchester, United Kingdom
| |
Collapse
|
19
|
Onitsuka M, Kinoshita Y, Nishizawa A, Tsutsui T, Omasa T. Enhanced IgG1 production by overexpression of nuclear factor kappa B inhibitor zeta (NFKBIZ) in Chinese hamster ovary cells. Cytotechnology 2017; 70:675-685. [PMID: 29188404 DOI: 10.1007/s10616-017-0170-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/11/2017] [Indexed: 02/02/2023] Open
Abstract
Several engineering strategies have been employed to improve the production of therapeutic recombinant proteins in Chinese hamster ovary (CHO) cell lines. We have focused on unfolded protein response-based engineering and reported that ATF4 overexpression increases protein production. In this study, transcriptome analysis of ATF4-overexpressed CHO cells was performed using high-coverage expression profiling, to search for another key factor contributing to recombinant protein production. We observed the upregulated expression of transcription factor, nuclear factor (NF)-kappa-B inhibitor zeta (NFKBIZ or Iκbζ), in ATF4-overexpressed cells. A total of 1917 bp of CHO NFKBIZ cDNA was cloned, and two stable cell lines overexpressing NFKBIZ were constructed. We investigated the effects of NFKBIZ on IgG1 production in CHO cells. Although the two stable cell lines, NFKBIZ-A and -B, had the opposite phenotypes in cell growth, the specific IgG1 production rate of both cell lines was enhanced by 1.2-1.4-fold. In the NFKBIZ-A cell line, the synergistic effect between enhanced viable cell density and improved specific IgG1 production rate brought about a large increase in the final IgG1 titer. Luciferase-based NF-κB signaling assay results suggest that altered p50/p50 signaling seems to be due to the opposite phenotypes in cell growth. No difference was observed in the translational levels and intracellular assembly states of IgG1 between mock and two NFKBIZ cell lines, indicating that the secretion machinery of correctly folded IgG1 was enhanced in NFKBIZ-overexpressing cell lines.
Collapse
Affiliation(s)
- Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Minamijosanjima-cho 2-1, Tokushima, 770-8513, Japan.
| | - Yukie Kinoshita
- Institute of Technology and Science, Tokushima University, 2-1, Minamijosanjima-cho, Tokushima, 770-8513, Japan
| | - Akitoshi Nishizawa
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomomi Tsutsui
- Institute of Technology and Science, Tokushima University, 2-1, Minamijosanjima-cho, Tokushima, 770-8513, Japan
| | - Takeshi Omasa
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Minamijosanjima-cho 2-1, Tokushima, 770-8513, Japan.,Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
20
|
Brown AJ, Kalsi D, Fernandez-Martell A, Cartwright J, Barber NOW, Patel YD, Turner R, Bryant CL, Johari YB, James DC. Expression Systems for Recombinant Biopharmaceutical Production by Mammalian Cells in Culture. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1002/9783527699124.ch13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Adam J. Brown
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Devika Kalsi
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | | | - Joe Cartwright
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Nicholas O. W. Barber
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Yash D. Patel
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | | | - Claire L. Bryant
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Yusuf B. Johari
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - David C. James
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| |
Collapse
|
21
|
Hussain H, Fisher DI, Abbott WM, Roth RG, Dickson AJ. Use of a protein engineering strategy to overcome limitations in the production of “Difficult to Express” recombinant proteins. Biotechnol Bioeng 2017. [DOI: 10.1002/bit.26358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hirra Hussain
- Manchester Institute of Biotechnology; Faculty of Science and Engineering; University of Manchester; M1 7DN Manchester United Kingdom
| | - David I. Fisher
- AstraZeneca, Cambridge Science Park; Milton Cambridge United Kingdom
| | - W. Mark Abbott
- AstraZeneca, Cambridge Science Park; Milton Cambridge United Kingdom
| | | | - Alan J. Dickson
- Manchester Institute of Biotechnology; Faculty of Science and Engineering; University of Manchester; M1 7DN Manchester United Kingdom
| |
Collapse
|
22
|
Hansen HG, Pristovšek N, Kildegaard HF, Lee GM. Improving the secretory capacity of Chinese hamster ovary cells by ectopic expression of effector genes: Lessons learned and future directions. Biotechnol Adv 2017; 35:64-76. [DOI: 10.1016/j.biotechadv.2016.11.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/12/2016] [Accepted: 11/28/2016] [Indexed: 12/12/2022]
|
23
|
Omasa T. Application of Unfolded Protein Response for Production of Biologics. YAKUGAKU ZASSHI 2016; 136:831-9. [PMID: 27252063 DOI: 10.1248/yakushi.15-00292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Improvements in the productivity of established mammalian cell lines used for biopharmaceutical production are desirable to increase product yields. Chinese hamster ovary (CHO) cells are the workhorse used for more than 60% of industrial therapeutic antibody production. Glycoprotein secretion by CHO cells requires intracellular processes including transcription, translation, glycosylation, and secretion. Within these intracellular steps, post-translational processes are rate limiting for production in high-producer cell lines. This review focuses on unfolded protein response-based engineering of CHO cells and details our recent progress in using overexpression of activating transcription factor 4 to promote recombinant protein production.
Collapse
Affiliation(s)
- Takeshi Omasa
- Tokushima University, Institute of Technology and Science
| |
Collapse
|
24
|
Lamriben L, Graham JB, Adams BM, Hebert DN. N-Glycan-based ER Molecular Chaperone and Protein Quality Control System: The Calnexin Binding Cycle. Traffic 2016; 17:308-26. [PMID: 26676362 DOI: 10.1111/tra.12358] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 12/17/2022]
Abstract
Helenius and colleagues proposed over 20-years ago a paradigm-shifting model for how chaperone binding in the endoplasmic reticulum was mediated and controlled for a new type of molecular chaperone- the carbohydrate-binding chaperones, calnexin and calreticulin. While the originally established basics for this lectin chaperone binding cycle holds true today, there has been a number of important advances that have expanded our understanding of its mechanisms of action, role in protein homeostasis, and its connection to disease states that are highlighted in this review.
Collapse
Affiliation(s)
- Lydia Lamriben
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jill B Graham
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Benjamin M Adams
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Daniel N Hebert
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
25
|
Rajendra Y, Hougland MD, Schmitt MG, Barnard GC. Transcriptional and post-transcriptional targeting for enhanced transient gene expression in CHO cells. Biotechnol Lett 2015; 37:2379-86. [PMID: 26298077 DOI: 10.1007/s10529-015-1938-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/11/2015] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To develop a simple approach to increase titers of transient gene expression in CHO cells without relying on host cell line engineering as recent reports suggest that for PEI-mediated transfections, under optimized conditions, DNA delivery into cells and nuclei is not the limiting factor. RESULTS N, N-Dimethyl acetamide (DMA) was utilized to enhance transcription. To target post-transcriptional events, we evaluated the co-expression of various genes involved in the unfolded protein response, namely XBP1S, ATF4, CHOP and HSPA5. XBP1S overexpression led to a 15-85 % increase in titer for multiple therapeutic proteins. Mechanistic studies confirmed that addition of 0.125 % DMA increased transgene mRNA levels as expected. However, overexpression of XBP1S had no effect on transgene mRNA levels, indicating that it influenced post-transcriptional events. Since DMA and XBP1S targeted different pathways, the combination of the two approaches led to an additive improvement in protein titer (150-250 % titer increase). CONCLUSION Transcriptional and post-transcriptional pathways of transient gene expression can be targeted to increase titers without resorting to host cell line engineering in a simple, short, 7 day production process.
Collapse
Affiliation(s)
- Yashas Rajendra
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Maria D Hougland
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Matthew G Schmitt
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Gavin C Barnard
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA.
| |
Collapse
|
26
|
Hussain H, Maldonado-Agurto R, Dickson AJ. The endoplasmic reticulum and unfolded protein response in the control of mammalian recombinant protein production. Biotechnol Lett 2014; 36:1581-93. [PMID: 24752815 DOI: 10.1007/s10529-014-1537-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/10/2014] [Indexed: 12/31/2022]
Abstract
The endoplasmic reticulum (ER) of eukaryotic cells is involved in the synthesis and processing of proteins and lipids in the secretory pathway. These processing events that proteins undergo in the ER may present major limiting steps for recombinant protein production. Increased protein synthesis, accumulation of improperly processed or mis-folded protein can induce ER stress. To cope with ER stress, the ER has quality control mechanisms, such as the unfolded protein response (UPR) and ER-associated degradation to restore homeostasis. ER stress and UPR activation trigger multiple physiological cellular changes. Here we review cellular mechanisms that cope with ER stress and illustrate how this knowledge can be applied to increase the efficiency of recombinant protein expression.
Collapse
Affiliation(s)
- Hirra Hussain
- Faculty of Life Sciences, The Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
27
|
Fomina-Yadlin D, Gosink JJ, McCoy R, Follstad B, Morris A, Russell CB, McGrew JT. Cellular responses to individual amino-acid depletion in antibody-expressing and parental CHO cell lines. Biotechnol Bioeng 2013; 111:965-79. [DOI: 10.1002/bit.25155] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/10/2013] [Accepted: 11/12/2013] [Indexed: 02/06/2023]
Affiliation(s)
| | - John J. Gosink
- Molecular Sciences & Computational Biology; Seattle Washington
| | - Rebecca McCoy
- Cell Sciences & Technology; Amgen, Inc.; Seattle Washington 98119
| | - Brian Follstad
- Cell Sciences & Technology; Amgen, Inc.; Seattle Washington 98119
| | - Arvia Morris
- Cell Sciences & Technology; Amgen, Inc.; Seattle Washington 98119
| | | | | |
Collapse
|