1
|
Effects of ubiquitous chromatin opening element (UCOE) on recombinant anti-TNFα antibody production and expression stability in CHO-DG44 cells. Cytotechnology 2022; 74:31-49. [PMID: 35185284 PMCID: PMC8817031 DOI: 10.1007/s10616-021-00503-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/17/2021] [Indexed: 02/03/2023] Open
Abstract
To date, the production of antibodies (mAbs) usually faces the risks of transgene expression reduction and instability, especially after long-time culture. The inclusion of ubiquitous chromatin opening element (UCOE) into expression vectors was reported to enhance protein production and maintain transgene expression stability in CHO cell lines. Thus, we investigate the effects of UCOE on recombinant monoclonal anti-TNFα antibody (mAbTNFα) production and expression stability in CHO-DG44 cells. In our study, non-UCOE and UCOE-based vectors encoding mAbTNFα were constructed and introduced into the CHO-DG44 cells. Cell pools and single-cell clones were obtained by selecting transfected cells with G418, amplifying them by treatment with methotrexate (MTX), and isolating them by limiting dilution. The effects of UCOE on mAb production and stable transgene expression in transfected cells were analyzed via the correlation between mAb yields and mRNA expression level variations, and gene copy number changes. The UCOE pool exhibited higher mAb yield compared to non-UCOE pool. The UCOE was associated with higher transgene transcriptional activity, leading to improvement of mAb production after MTX-mediated gene amplification. The incorporation of UCOE generated cells allowed isolation of greater numbers of positive clones with higher expression. Despite the slightly decreased mAb yield, UCOE clones still retain stable long-term expression in the absence of selective pressure, which was explained by the loss of transgene copies rather than due to the decline of transcriptional activity. In addition, the purified mAb had primary chemical and biological characteristics similar to those of adalimumab. The results showed that the incorporation of UCOE within vectors provides significant advantages in the generation of high-producing clones, enhancement of mAb production, and improvement of gene expression stability.
Collapse
|
2
|
Doan CC, Ho NQC, Nguyen TT, Nguyen TPT, Do DG, Hoang NS, Le TL. Enhancement of anti-TNFα monoclonal antibody production in CHO cells through the use of UCOE and DHFR elements in vector construction and the optimization of cell culture media. Prep Biochem Biotechnol 2021; 52:452-470. [PMID: 34427158 DOI: 10.1080/10826068.2021.1963981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Recently, there has been a high demand for anti-tumor necrosis factor-α monoclonal antibodies (mAbTNFα) in the treatment of rheumatoid arthritis and other autoimmune diseases. Thus, efficient strategies and stable high-producing cell lines need to be established to increase antibody production. In this study, we describe an efficient approach to establish a mAbTNFα high-producing clone through the optimization of expression vectors and cell culture media. The ubiquitous chromatin opening element (UCOE) and dihydrofolate reductase (DHFR)-based vectors encoding mAbTNFα were introduced into the CHO-DG44 cells using lipofection. Clones were obtained by selecting transfected cells with G418, amplifying them by treatment with methotrexate, and isolating them by limiting dilution. Different media formulated with commercial feeds and media were also screened to develop an improved medium. The antibody produced by the selected clone was purified, characterized, and compared to standard adalimumab. Using our established protocol, a cell clone obtained from stable mAbTNFα-expressing cell pools showed a 3.8-fold higher antibody titer compared to stable cell pools. Furthermore, the highest antibody yield of selected clones cultured in fed-batch mode using improved medium was 2450 ± 30 µg/mL, which was 13.2-fold higher than that of stable cell pool cultivated in batch mode using a basal medium. The purified antibody had primary chemical and biological characteristics similar to those of adalimumab. Therefore, the use of UCOE and DHFR vectors in combination with the optimization of cell culture media may help in establishing stable and high-producing CHO cell lines for therapeutic antibody production.
Collapse
Affiliation(s)
- Chinh Chung Doan
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam.,Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam
| | - Nguyen Quynh Chi Ho
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Thi Thuy Nguyen
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Thi Phuong Thao Nguyen
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam.,Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam
| | - Dang Giap Do
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Nghia Son Hoang
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam.,Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam
| | - Thanh Long Le
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam.,Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam
| |
Collapse
|
3
|
Panina AA, Dementieva IG, Aliev TK, Toporova VA, Balabashin DS, Bokov MN, Pozdnyakova LP, Shchemchukova OB, Dolgikh DA, Sveshnikov PG, Kirpichnikov MP. Recombinant Antibodies to the Ebola Virus Glycoprotein. Acta Naturae 2017; 9:84-91. [PMID: 29340221 PMCID: PMC5762832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Indexed: 11/30/2022] Open
Abstract
Currently, there are no approved therapies for targeted prevention and treatment of Ebola hemorrhagic fever. In the present work, we describe the development of a eukaryotic expression system for the production of three full-length chimeric antibodies (IgG1-kappa isotypes) GPE118, GPE325, and GPE534 to the recombinant glycoprotein of the Ebola virus (EBOV GP), which is a key factor in the pathogenicity of the disease. The immunochemical properties of the obtained antibodies were studied by immunoblotting and indirect, direct, and competitive ELISA using the recombinant EBOV proteins rGPdTM, NP, and VP40. The authenticity of the antibodies and the absence of cross-specificity with respect to the structural proteins NP and VP40 of the Ebola virus were proved. The epitope specificity of the resulting recombinant antibodies was studied using commercial neutralizing antibodies against the viral glycoprotein. The recombinant antibodies GPE118, GPE325, and GPE534 were shown to recognize glycoprotein epitopes that coincide or overlap with the epitopes of three well-studied neutralizing anti-Ebola virus antibodies.
Collapse
Affiliation(s)
- A. A. Panina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Mikluho- Maclay Str. 16/10, Moscow, 117997, Russia
| | - I. G. Dementieva
- Russian Scientific Center for Molecular Diagnosis and Treatment, Simferopol Blvd. 8, Moscow, 117149 , Russia
| | - T. K. Aliev
- Lomonosov Moscow State University, Department of Chemistry, Leninskie gory 1, bldg. 3, Moscow, 119991, Russia
| | - V. A. Toporova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Mikluho- Maclay Str. 16/10, Moscow, 117997, Russia
| | - D. S. Balabashin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Mikluho- Maclay Str. 16/10, Moscow, 117997, Russia
- Lomonosov Moscow State University, Faculty of Biology, Leninskie gory 1, bldg. 12, Moscow, 119991 , Russia
| | - M. N. Bokov
- Russian Scientific Center for Molecular Diagnosis and Treatment, Simferopol Blvd. 8, Moscow, 117149 , Russia
| | - L. P. Pozdnyakova
- Russian Scientific Center for Molecular Diagnosis and Treatment, Simferopol Blvd. 8, Moscow, 117149 , Russia
| | - O. B. Shchemchukova
- Russian Scientific Center for Molecular Diagnosis and Treatment, Simferopol Blvd. 8, Moscow, 117149 , Russia
| | - D. A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Mikluho- Maclay Str. 16/10, Moscow, 117997, Russia
- Lomonosov Moscow State University, Faculty of Biology, Leninskie gory 1, bldg. 12, Moscow, 119991 , Russia
| | - P. G. Sveshnikov
- Russian Scientific Center for Molecular Diagnosis and Treatment, Simferopol Blvd. 8, Moscow, 117149 , Russia
| | - M. P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Mikluho- Maclay Str. 16/10, Moscow, 117997, Russia
- Lomonosov Moscow State University, Faculty of Biology, Leninskie gory 1, bldg. 12, Moscow, 119991 , Russia
| |
Collapse
|
4
|
Gulce Iz S, Inevi MA, Metiner PS, Tamis DA, Kisbet N. A BioDesign Approach to Obtain High Yields of Biosimilars by Anti-apoptotic Cell Engineering: a Case Study to Increase the Production Yield of Anti-TNF Alpha Producing Recombinant CHO Cells. Appl Biochem Biotechnol 2017; 184:303-322. [PMID: 28685239 DOI: 10.1007/s12010-017-2540-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/14/2017] [Indexed: 10/19/2022]
Abstract
Recent developments in medical biotechnology have facilitated to enhance the production of monoclonal antibodies (mAbs) and recombinant proteins in mammalian cells. Human mAbs for clinical applications have focused on three areas, particularly cancer, immunological disorders, and infectious diseases. Tumor necrosis factor alpha (TNF-α), which has both proinflammatory and immunoregulatory functions, is an important target in biopharmaceutical industry. In this study, a humanized anti-TNF-α mAb producing stable CHO cell line which produces a biosimilar of Humira (adalimumab) was used. Adalimumab is a fully human anti-TNF mAb among the top-selling mAb products in recent years as a biosimilar. Products from mammalian cell bioprocesses are a derivative of cell viability and metabolism, which is mainly disrupted by cell death in bioreactors. Thus, different strategies are used to increase the product yield. Suppression of apoptosis, also called anti-apoptotic cell engineering, is the most remarkable strategy to enhance lifetime of cells for a longer production period. In fact, using anti-apoptotic cell engineering as a BioDesign approach was inspired by nature; nature gives prolonged life span to some cells like stem cells, tumor cells, and memory B and T cells, and researchers have been using this strategy for different purposes. In this study, as a biomimicry approach, anti-apoptotic cell engineering was used to increase the anti-TNF-α mAb production from the humanized anti-TNF-α mAb producing stable CHO cell line by Bcl-xL anti-apoptotic protein. It was shown that transient transfection of CHO cells by the Bcl-xL anti-apoptotic protein expressing plasmid prolonged the cell survival rate and protected cells from apoptosis. The transient expression of Bcl-xL using CHO cells enhanced the anti-TNF-α production. The production of anti-TNF-α in CHO cells was increased up to 215 mg/L with an increase of 160% after cells were transfected with Bcl-xL expressing plasmid with polyethylenimine (PEI) reagent at the ratio of 1:6 (DNA:PEI). In conclusion, the anti-apoptotic efficacy of the Bcl-xL expressing plasmid in humanized anti-TNF-α MAb producing stable CHO cells is compatible with curative effect for high efficiency recombinant protein production. Thus, this model can be used for large-scale production of biosimilars through transient Bcl-xL gene expression as a cost-effective method.
Collapse
Affiliation(s)
- Sultan Gulce Iz
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Bornova, Turkey.
| | - Muge Anil Inevi
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Bornova, Turkey
- Department of Biotechnology and Bioengineering, Izmir Institute of Technology, 35430, Izmir, Urla, Turkey
| | - Pelin Saglam Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Bornova, Turkey
| | - Duygu Ayyildiz Tamis
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Bornova, Turkey
- Turgut Ilaclari A.S, 34394, Istanbul, Besiktas, Turkey
| | - Nazli Kisbet
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Bornova, Turkey
- GlaxoSmithKline, 34394, Istanbul, Besiktas, Turkey
| |
Collapse
|