1
|
Akram W, Tagde P, Ahmed S, Arora S, Emran TB, Babalghith AO, Sweilam SH, Simal-Gandara J. Guaiazulene and related compounds: A review of current perspective on biomedical applications. Life Sci 2023; 316:121389. [PMID: 36646376 DOI: 10.1016/j.lfs.2023.121389] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Thousands of people worldwide pass away yearly due to neurological disorders, cardiovascular illnesses, cancer, metabolic disorders, and microbial infections. Additionally, a sizable population has also been impacted by hepatotoxicity, ulcers, gastroesophageal reflux disease, and breast fissure. These ailments are likewise steadily increasing along with the increase in life expectancy. Finding innovative therapies to cure and consequently lessen the impact of these ailments is, therefore, a global concern. METHODS AND MATERIALS All provided literature on Guaiazulene (GA) and its related compounds were searched using various electronic databases such as PubMed, Google Scholar, Web of Science, Elsevier, Springer, ACS, CNKI, and books via the keywords Guaiazulene, Matricaria chamomilla, GA-related compounds, and Guaiazulene analogous. RESULTS The FDA has approved the bicyclic sesquiterpene GA, commonly referred to as azulon or 1,4-dimethyl-7-isopropylazulene, as a component in cosmetic colorants. The pleiotropic health advantages of GA and related substances, especially their antioxidant and anti-inflammatory effects, attracted a lot of research. Numerous studies have found that GA can help to manage various conditions, including bacterial infections, tumors, immunomodulation, expectorants, diuretics, diaphoresis, ulcers, dermatitis, proliferation, and gastritis. These conditions all involve lipid peroxidation and inflammatory response. In this review, we have covered the biomedical applications of GA. Moreover, we also emphasize the therapeutic potential of guaiazulene derivatives in pre-clinical and clinical settings, along with their underlying mechanism(s). CONCLUSION GA and its related compounds exhibit therapeutic potential in several diseases. Still, it is necessary to investigate their potential in animal models for various other ailments and establish their safety profile. They might be a good candidate to advance to clinical trials.
Collapse
Affiliation(s)
- Wasim Akram
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Priti Tagde
- Amity Institute of Pharmacy, Amity University Campus, Sector 125, Noida 201313, UP, India; PRISAL Foundation (Pharmaceutical Royal International Society), India.
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | - Swamita Arora
- Amity Institute of Pharmacy, Amity University Campus, Sector 125, Noida 201313, UP, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Alqura University, Makkah, Saudi Arabia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain.
| |
Collapse
|
2
|
Biodiversity and application prospects of fungal endophytes in the agarwood-producing genera, Aquilaria and Gyrinops (Thymelaeaceae): A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
3
|
Saryan P, Gowda V. Low-cost FloPump for regulated air sampling of volatile organic compounds. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11343. [PMID: 32351802 PMCID: PMC7186897 DOI: 10.1002/aps3.11343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
PREMISE We present a low-cost, battery-operated, portable pump, "FloPump," which allows regulated air sampling for the study of volatile organic compounds (VOCs). VOCs are routinely investigated in applications such as atmospheric chemistry, agriculture, and fragrance biology. METHODS AND RESULTS We compared the performance of FloPump with the Supelco pump in collecting VOCs using two test samples: guava fruit (Psidium guajava) and a perfume. The sampling and identification of volatiles was carried out using a dynamic headspace sampling method followed by gas chromatography-mass spectrometry. We show that the sampling efficiency of FloPump is comparable to the commercial pump, and at an affordable cost of ~US$115 (~86% cheaper), it provides a viable option for researchers interested in sampling volatiles on a constrained budget. CONCLUSIONS Accurate air sampling is critical for the study of VOCs. We propose that FloPump will make air sampling more affordable, thus encouraging studies of VOCs.
Collapse
Affiliation(s)
- Preeti Saryan
- Department of Biological SciencesIndian Institute of Science Education and Research BhopalBhopal Bypass RoadBhopalMadhya Pradesh462066India
| | - Vinita Gowda
- Department of Biological SciencesIndian Institute of Science Education and Research BhopalBhopal Bypass RoadBhopalMadhya Pradesh462066India
| |
Collapse
|
4
|
Ahammad I, Sarker MRI, Khan AM, Islam S, Hossain M. Virtual Screening to Identify Novel Inhibitors of Pan ERBB Family of Proteins from Natural Products with Known Anti-tumorigenic Properties. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09992-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Demiray M, Miller DJ, Allemann RK. Harnessing enzyme plasticity for the synthesis of oxygenated sesquiterpenoids. Beilstein J Org Chem 2019; 15:2184-2190. [PMID: 31598175 PMCID: PMC6774066 DOI: 10.3762/bjoc.15.215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/26/2019] [Indexed: 12/05/2022] Open
Abstract
8-Methoxy-γ-humulene, (E)-8-methoxy-β-farnesene, 12-methoxy-β-sesquiphellandrene and 12-methoxyzingiberene can be synthesised in amorphadiene synthase-catalysed reactions from 8- and 12-methoxyfarnesyl diphosphates due to the highly plastic yet tightly controlled carbocationic chemistry of this sesquiterpene cyclase.
Collapse
Affiliation(s)
- Melodi Demiray
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT. United Kingdom
| | - David J Miller
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT. United Kingdom
| | - Rudolf K Allemann
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT. United Kingdom
| |
Collapse
|
6
|
Taghizadehghalehjoughi A, Hacimuftuoglu A, Cetin M, Ugur AB, Galateanu B, Mezhuev Y, Okkay U, Taspinar N, Taspinar M, Uyanik A, Gundogdu B, Mohammadzadeh M, Nalci KA, Stivaktakis P, Tsatsakis A, Jung TW, Jeong JH, El-Aty AMA. Effect of metformin/irinotecan-loaded poly-lactic-co-glycolic acid nanoparticles on glioblastoma: in vitro and in vivo studies. Nanomedicine (Lond) 2018; 13:1595-1606. [DOI: 10.2217/nnm-2017-0386] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: The present study was designed to evaluate the effects of irinotecan hydrochloride (IRI)- or metformin hydrochloride (MET)-loaded poly-lactic-co-glycolic acid (PLGA) nanoparticles (NPs) for the treatment of glioblastoma multiforme using in vitro neuron and U-87 MG glioblastoma cell cultures and in vivo animal model. Methods: The cytotoxic and neurotoxic effects of pure drugs, blank NPs and MET- and IRI-loaded PLGA NPs were investigated in vitro (using methylthiazolyldiphenyl-tetrazolium bromide assay) and in vivo (using Cavalieri's principle for estimation of cancer volume).Results: 1 and 2 mM doses of MET and MET-loaded PLGA NPs, respectively, significantly reduced the volume of extracted cancer. Conclusion: Consequently, MET- and IRI-loaded PLGA NPs may be a promising approach for the treatment of glioblastoma multiforme.
Collapse
Affiliation(s)
- Ali Taghizadehghalehjoughi
- Department of Pharmacology and Toxicology, Faculty of Veterinary Science, Atatürk University, 25240, Erzurum, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Meltem Cetin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, 25240, Erzurum, Turkey
| | - Afife Busra Ugur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Atatürk University, 25240, Erzurum, Turkey
| | - Bianca Galateanu
- Department of Biochemistry and Molecular Biology, 91-95 Splaiul Independentei, 050095, District 5, Bucharest, Romania
| | - Yaroslav Mezhuev
- Center of Biomaterials, D Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047 Moscow, Russia
| | - Ufuk Okkay
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Numan Taspinar
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Mehmet Taspinar
- Department of Medical Biology, School of Medicine, Yuzuncu Yil University, Van, Turkey
| | - Abdullah Uyanik
- Department of Nephrology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Betul Gundogdu
- Department of Pathology, Faculty of Medicine, Ataturk University, 25240, Erzurum, Turkey
| | - Maryam Mohammadzadeh
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Kemal Alp Nalci
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Polychronis Stivaktakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Greece
- Toxplus SA, University of Crete Spin-Off, 71601, Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Greece
- Toxplus SA, University of Crete Spin-Off, 71601, Heraklion, Greece
| | - Tae Woo Jung
- Research Administration Team, Seoul National University Bundang Hospital, Gyeonggi, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - AM Abd El-Aty
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Turkey
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
7
|
Kumar S, Dang S, Nigam K, Ali J, Baboota S. Selegiline Nanoformulation in Attenuation of Oxidative Stress and Upregulation of Dopamine in the Brain for the Treatment of Parkinson's Disease. Rejuvenation Res 2018; 21:464-476. [PMID: 29717617 DOI: 10.1089/rej.2017.2035] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Objective of this study was to determine whether the prepared nanoemulsion would be able to deliver selegiline to the brain by intranasal route, improving its bioavailability. Antioxidant activity, pharmacokinetic parameters, and dopamine concentration were determined. Oxidative stress models, which had Parkinson's disease-like symptoms, were used to evaluate the antioxidant activity of nanoemulsion loaded with selegiline in vivo. The antioxidant activity was evaluated by 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay and reducing power assay, which showed high scavenging efficiency for selegiline nanoemulsion compared to pure selegiline. Biochemical estimation results showed that the levels of antioxidant enzymes, including glutathione and superoxide dismutase, were increased, whereas the levels of thiobarbituric acid-reactive substances were decreased in intranasally administered selegiline nanoemulsion-treated group when compared with haloperidol-induced Parkinson's disease group (control). Moreover, selegiline nanoemulsion was found to be successful in decreasing the dopamine loss, indicating that nanoemulsion is a potential approach for intranasal delivery of selegiline to decrease the damage due to free radicals, thus avoiding consequent biochemical alterations that arise during Parkinson's disease. Brain:blood ratio of 2.207 > 0.093 of selegiline-loaded nanoemulsion (intranasally administered) > selegiline solution (administered intravenously), respectively, at 0.5 hours showed direct nose-to-brain delivery of drug bypassing blood-brain barrier. Selegiline-loaded nanoemulsion administered intranasally showed significantly high dopamine concentration (16.61 ± 3.06 ng/mL) compared to haloperidol-treated rats (8.59 ± 1.00 ng/mL) (p < 0.05). In this way, intranasal delivery of selegiline nanoemulsion might play an important role in the better management of Parkinson's disease.
Collapse
Affiliation(s)
- Shobhit Kumar
- 1 Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University) , New Delhi, India
| | - Shweta Dang
- 2 Department of Biotechnology, Jaypee Institute of Information Technology , Noida, India
| | - Kudeep Nigam
- 2 Department of Biotechnology, Jaypee Institute of Information Technology , Noida, India
| | - Javed Ali
- 1 Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University) , New Delhi, India
| | - Sanjula Baboota
- 1 Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University) , New Delhi, India
| |
Collapse
|
8
|
Yang C, Guo F, Zang C, Li C, Cao H, Zhang B. The Effect of Ginger Juice Processing on the Chemical Profiles of Rhizoma coptidis. Molecules 2018; 23:E380. [PMID: 29439421 PMCID: PMC6017751 DOI: 10.3390/molecules23020380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 12/29/2022] Open
Abstract
Rhizoma coptidis (RC) has been used as an herbal medicine in China for over one thousand years, and it was subjected to specific processing before use as materia medica. Processing is a pharmaceutical technique that aims to enhance the efficacy and/or reduce the toxicity of crude drugs according to traditional Chinese medicine theory. In this study, the chemical profiles of RC, ginger juice processed RC (GRC), and water processed RC (WRC) was determined to reveal the mechanism of processing of RC. UPLC-QTOF-MS analysis of methanol extract of RC, GRC, and WRC has been conducted to investigate the effect of processing on the composition of RC. HPLC-PDA was used to determine the variance of total alkaloids and seven alkaloids of RC during the processing. The volatiles of RC, GRC and ginger juice were separated by distillation, the change of volatiles content was recorded and analyzed, and the qualitative analysis of the volatiles was carried out using GC-MS. The microstructures of RC, GRC and WRC were observed using a light microscope. Results showed that ginger juice/water processing had limited influence on the composition of RC's methanol extract, but significant influence on the content of some alkaloids in RC. Ginger juice processing significantly increased (p < 0.05) the volatiles content of RC and changed the volatiles composition obviously. Processing also had an influence on the microstructure of RC. This research comprehensively revealed the mechanism of ginger juice processing of RC.
Collapse
Affiliation(s)
- Chunyu Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Fengqian Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Chen Zang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Cui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hui Cao
- School of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Baoxian Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
9
|
Abstract
Terpenoids are a very prominent class of natural compounds produced in diverse genera of plants, fungi, algae and sponges. They gained significant pharmaceutical value since prehistoric times, due to their broad spectrum of medical applications. The fragrant leaves of Eucalyptus trees are a rich source of terpenoids. Therefore this review starts by summarizing the main terpenoid compounds present in Eucalyptus globulus, E. citriodora, E. radiata and E. resinifera and describing their biosynthetic pathways. Of the enormous number of pharmaceutically important terpenoids, this paper also reviews some well established and recently discovered examples and discusses their medical applications. In this context, the synthetic processes for (–)-menthol, (–)- cis-carveol, (+)-artemisinine, (+)-merrilactone A and (–)-sclareol are presented. The tricyclic sesquiterpene (–)-englerin A isolated from the stem bark of the Phyllanthus engleri plant ( Euphorbiaceae) is highly active against certain renal cancer cell lines. In addition, recent studies showed that englerin A is also a potent and selective activator of TRPC4 and TRPC5 calcium channels. These important findings were the motivation for several renowned research labs to achieve a total synthesis of (–)-englerin A. Two prominent examples – Christmann and Metz – are compared and discussed in detail.
Collapse
Affiliation(s)
- Rolf Jaeger
- Formerly Institute of Organic Chemistry, Kiel University, Otto-Hahn-Platz, 24098 Kiel, Germany
| | - Eckehard Cuny
- Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Darmstadt Technical University, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| |
Collapse
|
10
|
Cetin D, Hacımuftuoglu A, Tatar A, Turkez H, Togar B. The in vitro protective effect of salicylic acid against paclitaxel and cisplatin-induced neurotoxicity. Cytotechnology 2015. [PMID: 26199062 DOI: 10.1007/s10616-015-9896-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Paclitaxel (PAC) and cisplatin (CIS) are two established chemotherapeutic drugs used in combination for the treatment of various solid tumors. However, the usage of PAC and CIS are limited because of the incidence of their moderate or severe neurotoxic side effects. In this study, we aimed to assess the protective role of salicylic acid (SA) against neurotoxicity caused by PAC and CIS. For this purpose, newborn Sprague Dawley rats were decapitated in sterile atmosphere and primary cortex neuron cultures were established. On the 10th day SA was added into culture plates. PAC and CIS were added on the 12th day. The cytotoxicity was determined by using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Oxidative alterations were assessed using total antioxidant capacity and total oxidative stress assays in rat primary neuron cell cultures. It was shown that both concentrations of PAC and CIS treatments caused neurotoxicity. Although SA decreased the neurotoxicity by CIS and PAC, it was more effective against the toxicity caused by CIS rather than the toxicity caused by PAC. In conclusion it was clearly revealed that SA decreased the neurotoxic effect of CIS and PAC in vitro.
Collapse
Affiliation(s)
- Damla Cetin
- Department of Medical Pharmacology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Ahmet Hacımuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey.
| | - Abdulgani Tatar
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Hasan Turkez
- Department of Molecular Biology and Genetics, Faculty of Sciences, Erzurum Technical University, Erzurum, Turkey.,Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Basak Togar
- Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
11
|
Togar B, Turkez H, Hacimuftuoglu A, Tatar A, Geyikoglu F. Guaiazulene biochemical activity and cytotoxic and genotoxic effects on rat neuron and N2a neuroblastom cells. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2015; 4:29-33. [PMID: 26401381 PMCID: PMC4566767 DOI: 10.5455/jice.20141124062203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 11/24/2014] [Indexed: 12/11/2022]
Abstract
AIM Neuroblastoma (NB)cells are often used in cancer researches such as glioblastoma cells since they have the potential of high mitotic activity, nuclear pleomorphism, and tumor necrosis. Guaiazulene (GYZ 1,4-dimethyl-7-isopropylazulene)is present in several essential oils of medicinal and aromatic plants. Many studies have reported the cytotoxic effect of GYZ; however, there are no studies that compare such effects between cancer cell lines and normal human cells after treatment with GYZ. MATERIALS AND METHODS In this study, we aimed to describe in vitro antiproliferative and/or cytotoxic properties (by 3-[4,5 dimetylthiazol -2-yl]-2,5 diphenlytetrazolium bromide [MTT] test), oxidative effects (by total antioxidant capacity [TAC] and total oxidative stress [TOS] analysis)and genotoxic damage potentials (by single cell gel electrophoresis)of GYZ. RESULT The results indicated that GYZ have anti-proliferative activity suppressing the proliferation of neuron and N2a-NB cells at high doses. In addition, GYZ treatments at higher doses led to decreases of TAC levels and increases of TOS levels in neuron and N2a-NB cells. On the other hand, the mean values of the total scores of cells showing DNA damage were not found different from the control values. CONCLUSION From this study, it is observed that GYZ has in vitro cytotoxic activity against neuron and N2a-NB cells.
Collapse
Affiliation(s)
- Basak Togar
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Hasan Turkez
- Department of Molecular Biology and Genetics, Faculty of Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Abdulgani Tatar
- Department of Medical Genetics, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Fatime Geyikoglu
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|