1
|
Mohajer F, Khoradmehr A, Riazalhosseini B, Zendehboudi T, Nabipour I, Baghban N. In vitro detection of marine invertebrate stem cells: utilizing molecular and cellular biology techniques and exploring markers. Front Cell Dev Biol 2024; 12:1440091. [PMID: 39239558 PMCID: PMC11374967 DOI: 10.3389/fcell.2024.1440091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Marine invertebrate stem cells (MISCs) represent a distinct category of pluripotent and totipotent cells with remarkable abilities for self-renewal and differentiation into multiple germ layers, akin to their vertebrate counterparts. These unique cells persist throughout an organism's adult life and have been observed in various adult marine invertebrate phyla. MISCs play crucial roles in numerous biological processes, including developmental biology phenomena specific to marine invertebrates, such as senescence, delayed senescence, whole-body regeneration, and asexual reproduction. Furthermore, they serve as valuable models for studying stem cell biology. Despite their significance, information about MISCs remains scarce and scattered in the scientific literature. In this review, we have carefully collected and summarized valuable information about MISC detection by perusing the articles that study and detect MISCs in various marine invertebrate organisms. The review begins by defining MISCs and highlighting their unique features compared to vertebrates. It then discusses the common markers for MISC detection and in vitro techniques employed in invertebrate and vertebrates investigation. This comprehensive review provides researchers and scientists with a cohesive and succinct overview of MISC characteristics, detection methods, and associated biological phenomena in marine invertebrate organisms. We aim to offer a valuable resource to researchers and scientists interested in marine invertebrate stem cells, fostering a better understanding of their broader implications in biology. With ongoing advancements in scientific techniques and the continued exploration of marine invertebrate species, we anticipate that further discoveries will expand our knowledge of MISCs and their broader implications in biology.
Collapse
Affiliation(s)
- Fatemeh Mohajer
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Behnaz Riazalhosseini
- The Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tuba Zendehboudi
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Neda Baghban
- Food Control Laboratory, Food and Drug Deputy, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
2
|
Musgrove L, Russell FD, Ventura T. Considerations for cultivated crustacean meat: potential cell sources, potential differentiation and immortalization strategies, and lessons from crustacean and other animal models. Crit Rev Food Sci Nutr 2024:1-25. [PMID: 38733287 DOI: 10.1080/10408398.2024.2342480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Cultivated crustacean meat (CCM) is a means to create highly valued shrimp, lobster, and crab products directly from stem cells, thus removing the need to farm or fish live animals. Conventional crustacean enterprises face increasing pressures in managing overfishing, pollution, and the warming climate, so CCM may provide a way to ensure sufficient supply as global demand for these products grows. To support the development of CCM, this review briefly details crustacean cell culture work to date, before addressing what is presently known about crustacean muscle development, particularly the molecular mechanisms involved, and how this might relate to recent work on cultivated meat production in vertebrate species. Recognizing the current lack of cell lines available to establish CCM cultures, we also consider primary stem cell sources that can be obtained non-lethally including tissues from limbs which are readily released and regrown, and putative stem cells in circulating hemolymph. Molecular approaches to inducing myogenic differentiation and immortalization of putative stem cells are also reviewed. Finally, we assess the current status of tools available to CCM researchers, particularly antibodies, and propose avenues to address existing shortfalls in order to see the field progress.
Collapse
Affiliation(s)
- Lisa Musgrove
- Centre for Bioinnovation, University of the Sunshine Coast (UniSC), Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast (UniSC), Maroochydore, QLD, Australia
| | - Fraser D Russell
- Centre for Bioinnovation, University of the Sunshine Coast (UniSC), Maroochydore, QLD, Australia
- School of Health, University of the Sunshine Coast (UniSC), Maroochydore, QLD, Australia
| | - Tomer Ventura
- Centre for Bioinnovation, University of the Sunshine Coast (UniSC), Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast (UniSC), Maroochydore, QLD, Australia
| |
Collapse
|
3
|
Frydrychová RČ, Konopová B, Peska V, Brejcha M, Sábová M. Telomeres and telomerase: active but complex players in life-history decisions. Biogerontology 2024; 25:205-226. [PMID: 37610666 DOI: 10.1007/s10522-023-10060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023]
Abstract
Studies on human telomeres have established that telomeres exert a significant influence on lifespan and health of organisms. However, recent research has indicated that the original idea that telomeres affect lifespan in a universal and central manner across all eukaryotic species is an oversimplification. Indeed, findings from a variety of animal species revealed that the role of telomere biology in aging is more subtle and intricate than previously recognized. Here, we show how telomere biology varies depending on the taxon. We also show how telomere biology corresponds to basic life history traits and affects the life table of a species and investments in growth, body size, reproduction, and lifespan; telomeres are hypothesized to shape evolutionary perspectives for species in an active but complex manner. Our evaluation is based on telomere biology data from many examples from throughout the animal kingdom that vary according to the degree of organismal complexity and life history strategies.
Collapse
Affiliation(s)
- Radmila Čapková Frydrychová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, Ceske Budejovice, Czech Republic.
| | - Barbora Konopová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| | - Vratislav Peska
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Miloslav Brejcha
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, Ceske Budejovice, Czech Republic
| | - Michala Sábová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic
| |
Collapse
|
4
|
Liang C, Wang Y, Wang Y, Chen X, Guo H. Telomerase Reverse Transcriptase Gene from Greasyback Shrimp Metapenaeus ensis: Isolation, Genomic Organization and Expression Pattern Analysis. Zoolog Sci 2019; 34:419-428. [PMID: 28990474 DOI: 10.2108/zs160130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Telomerase reverse transcriptase (TERT), a catalytic subunit of telomerase, plays a key role in the activity and biological functions of telomerase. In the present study we isolated and characterized the full-length cDNA and DNA sequences of the TERT gene (MeTERT) from Metapenaeus ensis. MeTERT cDNA was 4239 bp in length, which consisted of a 369 bp 5'UTR, a 3231 bp open reading frame encoding 1076 amino acids, and a 639 bp 3'UTR. The genomic DNA of MeTERT had only two introns, similar to beetle (two introns) and silkworm (intronless). The MeTERT protein showed only 5.2-7.9% identity with other known TERTs but contained all the four primary TERT domains of the N-terminal TEN, RNA binding domain (TRBD), reverse transcriptase (RT) and C-terminus CTE. Expression pattern analysis by RT-qPCR showed that, the MeTERT mRNA transcripts could be detected in all the tested samples, with relatively higher expression level in the gill, mysis, Oka organ and egg, but lower level in muscle, ovary, in vitro cultured 3-d Oka organ cells and heart. The significant decrease of MeTERT expression in the in vitro cultured 3-d Oka organ primary cells compared with their source tissue of Oka organ may have contributed to the cellular mitosisarrest. Thus trans-activation of TERT gene may be a candidate in attempts to immortalize in vitro cultured shrimp cells. This work will lay a solid foundation for future studies of the biological functions of telomerase in crustaceans.
Collapse
Affiliation(s)
- Cuicui Liang
- 1 Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.,2 Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Yuhao Wang
- 3 Qingdao No.2 Middle School of Shandong Province, Qingdao 266061, China
| | - Yujie Wang
- 3 Qingdao No.2 Middle School of Shandong Province, Qingdao 266061, China
| | - Xuemei Chen
- 1 Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.,2 Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Huarong Guo
- 1 Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.,2 Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
5
|
Thansa K, Yocawibun P, Suksodsai H. The cellular death pattern of primary haemocytes isolated from the black tiger shrimp (Penaeus monodon). FISH & SHELLFISH IMMUNOLOGY 2016; 57:243-251. [PMID: 27561625 DOI: 10.1016/j.fsi.2016.08.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/03/2016] [Accepted: 08/20/2016] [Indexed: 06/06/2023]
Abstract
A key to successfully generate the penaeid shrimp cell line is to find out how primary cells died. The most suitable period to culture Penaeus monodon haemocytes was in the first 48 h of culture because cells had normal morphology, high percent of viable cells (65.29 ± 5.43%), low percent of early (11.75 ± 1.30%) and late apoptotic cells (15.47 ± 11.71%) determined by Annexin V and TUNEL including constant IAP (0.06 ± 0.01-0.07 ± 0.01) and caspase-3 expression (0.30 ± 0.06-0.39 ± 0.10) by real-time PCR throughout the experiment. Moreover, adding 50 and 250 μM of the cell permeable pan caspase inhibitor Z-VAD-FMK produced some melanised cells since the 48(th) hour, while percent of viable cells was decreased since the 24(th) hour with no difference in percent of early and late apoptotic cells compared to control at each time point. No difference of IAP and caspase-3 expression level in both Z-VAD-FMK groups was found compared to control and vehicle groups at each time point, excluding caspase-3 in 250 μM Z-VAD-FMK at the 24(th) hour was higher than control and vehicle. Supplementing sodium fluoride (NaF) induced cell membrane damage and cellular shrinkage of primary haemocytes within 2 h. Even percent of viable cells was reduced down to zero and percent of late apoptotic cells was increased by 2 h of incubation in 25 and 50 mM NaF, IAP and caspase-3 in all NaF groups was not different from control. These results indicate that a number of primary haemocytes derived in this study die through the apoptotic process.
Collapse
Affiliation(s)
- Kwanta Thansa
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand.
| | - Patchari Yocawibun
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand; Center of Excellence for Marine Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Hathaitip Suksodsai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand.
| |
Collapse
|
6
|
Kuznetsova MV, Maslennikova IL, Nekrasova IV, Shirshev SV. Effect of mixed culture supernatants of Pseudomonas aeruginosa and Escherichia coli on apoptosis, necrosis, and oxidative activity of neutrophils. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2015; 461:112-115. [PMID: 25937335 DOI: 10.1134/s0012496615020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Indexed: 06/04/2023]
Affiliation(s)
- M V Kuznetsova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Science, Perm, 614081, Russia
| | | | | | | |
Collapse
|