1
|
Specian AFL, Tuttis K, Serpeloni JM, Ribeiro DL, Nunes HL, Tangerina M, Sannomiya M, Varanda EA, Vilegas W, Cólus CM. Chemical characterization of Brazilian savannah Byrsonima species (muricis) and their impact on genomic instability and chemopreventive effects. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 887:503586. [PMID: 37003647 DOI: 10.1016/j.mrgentox.2023.503586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
The identification of new drugs with few or no adverse effects is of great interest worldwide. In cancer therapy, natural products have been used as chemopreventive and chemotherapeutic agents. Plants from the Brazilian savannah belonging to the Byrsonima genus are popularly known as muricis and have attracted much attention due to their various pharmacological activities. However, there are currently no data on these plants concerning their use as chemopreventive or chemotherapeutic agents in human cell lines. The present study assessed the potential of B. correifolia, B. verbascifolia, B. crassifolia, and B. intermedia extracts as natural alternatives in the prevention and/or treatment of cancer. The chemical constituents present in each extract were analyzed by electrospray ionization-mass spectrometry (ESI-MSN). The mutagenic/antimutagenic (micronucleus assay), genotoxic/antigenotoxic (comet assay), apoptotic/necrotic (acridine orange/ethidium bromide uptake), and oxidative/antioxidative (CM-H2DCFDA) effects of the extracts and their influence on gene expression (RTqPCR) were investigated in nonmetabolizing gastric (MNP01) and metabolizing hepatocarcinoma (HepG2) epithelial cells to evaluate the effects of metabolism on the biological activities of the extracts. The genotoxicity, mutagenicity, and apoptotic effects observed in HepG2 cells with B. correifolia and B. verbascifolia extracts are probably associated with the presence of proanthocyanidins and amentoflavone. In MNP01 cells, none of the four extracts showed mutagenic effects. B. crassifolia and B. intermedia extracts exhibited strong antimutagenicity and enhanced detoxification in HepG2 cells and antioxidant capacities in both types of cells, possibly due to the presence of gallic and quinic acids, which possess chemopreventive properties. This study identifies for the first time B. correifolia and B. verbascifolia extracts as potential agents against hepatocarcinoma and B. crassifolia and B. intermedia extracts as putative chemopreventive agents.
Collapse
|
2
|
Fortunato RH, Nores MJ. "Cow's Hoof" ( Bauhinia L., Leguminosae): A Review on Pharmacological Properties of Austral South American Species. PLANTS (BASEL, SWITZERLAND) 2022; 12:31. [PMID: 36616160 PMCID: PMC9823647 DOI: 10.3390/plants12010031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The genus Bauhinia s.l. (Leguminosae), known as cow's hoof, unha de boi or pata de vaca, has been used in traditional medicine worldwide. The aim of the present review is to summarize the studies published on the biological activity of the main native medicinal species reported in austral South America. Of the 14 species present in the region, 10 are consumed as leaf infusions to regulate glucose and lipid metabolism, as well as used for their anti-inflammatory and analgesic effects and to treat various diseases. Pharmacological properties have been recorded in seven species. Antioxidant, anticoagulant, antihypertensive, diuretic, antimicrobial and antitumor properties have been reported in B. forficata. Together with B. holophylla, they are important for their antidiabetic properties, since several studies indicate their effectiveness as a hypoglycemic agent. B. bauhinioides is distinguished for its anti-inflammatory and antithrombotic activities and S. microstachya for its analgesic properties. Anti-ulcer and wound healing activities recorded in B. holophylla and B. ungulata, respectively, are of particular interest. Most of the species possess antitumor activity. The antioxidant capacity of flavonoids and other bioactive compounds make these plants good candidates to assist or treat various alterations related with oxidative stress, such as diabetic complications. Thus, these species constitute promising targets for new bioactive substance research and phytotherapy.
Collapse
Affiliation(s)
| | - María Jimena Nores
- Facultad de Ciencias Exactas, Físicas y Naturales, Instituto Multidisciplinario de Biología Vegetal (CONICET—Universidad Nacional de Córdoba), UNC, Vélez Sarsfield 1611, Argentina
| |
Collapse
|
3
|
Flavonoid-Rich Fractions of Bauhinia holophylla Leaves Inhibit Candida albicans Biofilm Formation and Hyphae Growth. PLANTS 2022; 11:plants11141796. [PMID: 35890430 PMCID: PMC9322443 DOI: 10.3390/plants11141796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
This study evaluated the effect of the extract and fractions of Bauhinia holophylla on Candida albicans planktonic growth, biofilm formation, mature biofilm, and hyphae growth. Three C. albicans strains (SC5314, ATCC 18804, and ATCC 10231) were tested. The crude extract and the fractions were obtained by exhaustive percolation and liquid–liquid partition, respectively. Phytochemical analyses of B. holophylla extract and fractions were performed using high-performance liquid chromatography coupled with a diode-array detector and mass spectrometry (HPLC-DAD-MS). A microdilution assay was used to evaluate the effect of the B. holophylla extract and fractions on C. albicans planktonic growth, and crystal violet staining was used to measure the total biomass of the biofilm. Hyphae growth was analyzed using light microscopy. Thirteen flavonoids were identified, with a predominance of the flavonol-3-O-glycoside type based on quercetin, myricetin, and kaempferol. Flavonoid-rich fractions of B. holophylla leaves displayed antifungal activity and inhibited both biofilm formation and hyphae growth in all the tested strains, but were not effective on C. albicans planktonic growth and mature biofilm. This study indicates that flavonoid-rich fractions from B. holophylla leaves interfere with the virulence of Candida species and support the use of Bauhinia spp. in folk medicine to treat infections.
Collapse
|
4
|
Timocin T, Arslan M, Basri Ila H. Evaluation of in vitro and in vivo genotoxic and antigenotoxic effects of Rhus coriaria. Drug Chem Toxicol 2019; 44:409-417. [PMID: 30945575 DOI: 10.1080/01480545.2019.1593433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rhus coriaria has been important in the treatment of many diseases in traditional use. In this content, the genotoxic, antigenotoxic, and oxidative stress effects of methanol extract of R. coriaria (RCE) were investigated in this study. Two hundred fifty, 500, or 750 µg/mL concentrations of RCE were not found to have DNA damaging effect on pET22-b(+) plasmid and were unable to induce micronuclei in human lymphocytes (24 or 48 h treatment period). However, it did not inhibit the genotoxic effect of mitomycin-c (0.25 µg/mL). Cytotoxic effects of RCE were investigated using mitotic index (MI) and nuclear division index (NDI). Five hundred, 1000, and 2000 mg/kg concentrations of RCE did not induce chromosome aberrations in rat bone marrow cells for 12 or 24 h treatment period. In addition, 2000 mg/kg concentration of RCE showed an antigenotoxic effect by decreasing to genotoxic effect of 400 mg/kg urethane at 12 and 24 h treatment periods. RCE showed cytotoxic effects by significantly decreasing NDI. Moreover, RCE increased cytotoxic effect of Mitomycin C (MMC). However, RCE did not induce cytotoxicity in rat bone marrow cells. The highest concentration of RCE reduced total oxidant level in 12 h treatment. Interestingly, the lowest total oxidant level was found in rats blood treated with the lowest concentration RCE and urethane together. Thousand and 2000 mg/kg concentrations of RCE decreased total antioxidant levels of rat blood at 24 h treatment period. Our results showed that RCE possess cytotoxic effect in short-term treatments in vitro. However, it does not demonstrate genotoxic or cytotoxic effects in vivo.
Collapse
Affiliation(s)
- Taygun Timocin
- Faculty of Science and Letters, Department of Biology, Cukurova University, Adana, Turkey
| | - Mehmet Arslan
- Department of Nursing, School of Health Sciences, Ardahan University, Ardahan, Turkey
| | - Hasan Basri Ila
- Faculty of Science and Letters, Department of Biology, Cukurova University, Adana, Turkey
| |
Collapse
|
5
|
Tuttis K, da Costa DLMG, Nunes HL, Specian AFL, Serpeloni JM, Santos LCD, Varanda EA, Vilegas W, Martínez-Lopez W, de Syllos Cólus IM. Pouteria ramiflora (Mart.) Radlk. extract: Flavonoids quantification and chemopreventive effect on HepG2 cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:792-804. [PMID: 30001190 DOI: 10.1080/15287394.2018.1491911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Pouteria ramiflora (Mart.) Radlk., popularly known as curriola, is commonly used in Brazil as medicinal plant to treat worm infections, dysentery, pain, inflammation, hyperlipidemia, and obesity. At present the safety of this extract when used therapeutically in human remains to be determined. Thus, the aim of this study was to examine cytotoxicity, antiproliferative, and antimutagenic actions of this extract. The hydroalcoholic extract from P. ramiflora leaves consisted of flavonoids identified and quantified as myricetin-3-O-β-D-galactopyranoside (13.55 mg/g) and myricetin-3-O-α-L-rhamnopyranoside (9.61 mg/g). The extract exhibited cytotoxicity at concentrations higher than 1.5 µg/ml in human hepatocarcinoma (HepG2)and 2.5 µg/ml in non-tumoral primary gastric (GAS) cells using the MTT assay, and at concentrations higher than 3 µg/ml in HepG2 and 3.5 µg/ml in GAS cells by the neutral red assay. The extract did not show antiproliferative effect as evidenced by the nuclear division index (NDI). However, in the presence of benzo[a]pyrene (BaP) (positive control), an enhanced cytostatic effect in the NDI and flow cytometry was noted. It is of interest that when the extract was co-incubated with BaP a significant decrease in DNA damage was observed indicating an antimutagenic action. This protective effect might be attributed to myricetin and gallic acid found in P. ramiflora extract. The low cytotoxicity action and protective effect observed in the present study encourage further studies regarding other biological effects of P. ramiflora, as well as its potential use as a chemopreventive agent.
Collapse
Affiliation(s)
- Katiuska Tuttis
- a Departamento de Biologia Geral, Centro de Ciências Biológicas , Universidade Estadual de Londrina - UEL , Londrina , Paraná , Brazil
| | - Daryne Lu Maldonado Gomes da Costa
- b Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso - IFMT , Cuiabá , Mato Grosso , Brazil
- c Departamento de Química Orgânica, Instituto de Química , Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP , Araraquara , São Paulo , Brazil
| | - Higor Lopes Nunes
- a Departamento de Biologia Geral, Centro de Ciências Biológicas , Universidade Estadual de Londrina - UEL , Londrina , Paraná , Brazil
| | - Ana Flávia Leal Specian
- a Departamento de Biologia Geral, Centro de Ciências Biológicas , Universidade Estadual de Londrina - UEL , Londrina , Paraná , Brazil
| | - Juliana Mara Serpeloni
- a Departamento de Biologia Geral, Centro de Ciências Biológicas , Universidade Estadual de Londrina - UEL , Londrina , Paraná , Brazil
| | - Lourdes Campaner Dos Santos
- c Departamento de Química Orgânica, Instituto de Química , Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP , Araraquara , São Paulo , Brazil
| | - Eliana Aparecida Varanda
- d Departamento de Ciências Biológicas, Faculdade de Ciências Farmacêuticas , Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP , Araraquara , São Paulo , Brazil
| | - Wagner Vilegas
- e Campus Experimental do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP , São Vicente , São Paulo , Brazil
| | - Wilner Martínez-Lopez
- f Instituto de Investigaciones Biológicas Clemente Estable - IIBCE. Montevideo , Montevideo , Uruguay
| | - Ilce Mara de Syllos Cólus
- a Departamento de Biologia Geral, Centro de Ciências Biológicas , Universidade Estadual de Londrina - UEL , Londrina , Paraná , Brazil
| |
Collapse
|