1
|
Wang J, Wu X, Zhang L, Wang Q, Sun X, Ji D, Li Y. miR-133a-3p and miR-145-5p co-promote goat hair follicle stem cell differentiation by regulating NANOG and SOX9 expression. Anim Biosci 2024; 37:609-621. [PMID: 37946416 PMCID: PMC10915213 DOI: 10.5713/ab.23.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE Hair follicle stem cells (HFSCs) differentiation is a critical physiological progress in skin hair follicle (HF) formation. Goat HFSCs differentiation is one of the essential processes of superior-quality brush hair (SQBH) synthesis. However, knowledge regarding the functions and roles of miR-133a-3p and miR-145-5p in differentiated goat HFSCs is limited. METHODS To examine the significance of chi-miR-133a-3p and chi-miR-145-5p in differentiated HFSCs, overexpression and knockdown experiments of miR-133a-3p and miR-145-5p (Mimics and Inhibitors) separately or combined were performed. NANOG, SOX9, and stem cell differentiated markers (β-catenin, C-myc, Keratin 6 [KRT6]) expression levels were detected and analyzed by using real-time quantitative polymerase chain reaction, western blotting, and immunofluorescence assays in differentiated goat HFSCs. RESULTS miR-133a-3p and miR-145-5p inhibit NANOG (a gene recognized in keeping and maintaining the totipotency of embryonic stem cells) expression and promote SOX9 (an important stem cell transcription factor) expression in differentiated stem cells. Functional studies showed that miR-133a-3p and miR-145-5p individually or together overexpression can facilitate goat HFSCs differentiation, whereas suppressing miR-133a-3p and miR-145-5p or both inhibiting can inhibit goat HFSCs differentiation. CONCLUSION These findings could more completely explain the modulatory function of miR-133a-3p and miR-145-5p in goat HFSCs growth, which also provide more understandings for further investigating goat hair follicle development.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009,
China
| | - Xi Wu
- Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Liuming Zhang
- Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Qiang Wang
- Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Xiaomei Sun
- Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Dejun Ji
- Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Yongjun Li
- Key Laboratory of Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009,
China
| |
Collapse
|
2
|
Wang J, Wan X, Le Q. Cross-regulation between SOX9 and the canonical Wnt signalling pathway in stem cells. Front Mol Biosci 2023; 10:1250530. [PMID: 37664185 PMCID: PMC10469848 DOI: 10.3389/fmolb.2023.1250530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
SOX9, a member of the SRY-related HMG-box transcription factors, has been reported to critically regulate fetal development and stem cell homeostasis. Wnt signalling is a highly conserved signalling pathway that controls stem cell fate decision and stemness maintenance throughout embryonic development and adult life. Many studies have shown that the interactions between SOX9 and the canonical Wnt signalling pathway are involved in many of the physiological and pathological processes of stem cells, including organ development, the proliferation, differentiation and stemness maintenance of stem cells, and tumorigenesis. In this review, we summarize the already-known molecular mechanism of cross-interactions between SOX9 and the canonical Wnt signalling pathway, outline its regulatory effects on the maintenance of homeostasis in different types of stem cells, and explore its potential in translational stem cell therapy.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Xichen Wan
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Qihua Le
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Research Center, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Myopia Key Laboratory of Ministry of Health, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| |
Collapse
|
3
|
Yu Y, Xiao H, Tang G, Wang H, Shen J, Sun Y, Wang S, Kong W, Chai Y, Liu X, Wang X, Wen G. Biomimetic hydrogel derived from decellularized dermal matrix facilitates skin wounds healing. Mater Today Bio 2023; 21:100725. [PMID: 37483381 PMCID: PMC10359665 DOI: 10.1016/j.mtbio.2023.100725] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
Cutaneous wound healing affecting millions of people worldwide represents an unsolvable clinical issue that is frequently challenged by scar formation with dramatical pain, impaired mobility and disfigurement. Herein, we prepared a kind of light-sensitive decellularized dermal extracellular matrix-derived hydrogel with fast gelling performance, biomimetic porous microstructure and abundant bioactive functions. On account of its excellent cell biocompatibility, this ECM-derived hydrogel could induce a marked cellular infiltration and enhance the tube formation of HUVECs. In vivo experiments based upon excisional wound splinting model showed that the hydrogel prominently imparted skin wound healing, as evidenced by notably increased skin appendages and well-organized collagen expression, coupled with significantly enhanced angiogenesis. Moreover, the skin regeneration mediated by this bioactive hydrogel was promoted by an accelerated M1-to-M2 macrophage phenotype transition. Consequently, the decellularized dermal matrix-derived bioactive hydrogel orchestrates the entire skin healing microenvironment to promote wound healing and will be of high value in treatment of cutaneous wound healing. As such, this biomimetic ddECMMA hydrogel provides a promising versatile opinion for the clinical translation.
Collapse
Affiliation(s)
- Yaling Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Huimin Xiao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Guoke Tang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Hongshu Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yi Sun
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Shuaiqun Wang
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Wei Kong
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
4
|
Stüfchen I, Beyer F, Staebler S, Fischer S, Kappelmann M, Beckervordersandforth R, Bosserhoff AK. Sox9 regulates melanocytic fate decision of adult hair follicle stem cells. iScience 2023; 26:106919. [PMID: 37283806 PMCID: PMC10239701 DOI: 10.1016/j.isci.2023.106919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/02/2023] [Accepted: 05/14/2023] [Indexed: 06/08/2023] Open
Abstract
The bulge of hair follicles harbors Nestin+ (neural crest like) stem cells, which exhibit the potential to generate various cell types including melanocytes. In this study, we aimed to determine the role of Sox9, an important regulator during neural crest development, in melanocytic differentiation of those adult Nestin+ cells. Immunohistochemical analysis after conditional Sox9 deletion in Nestin+ cells of adult mice revealed that Sox9 is crucial for melanocytic differentiation of these cells and that Sox9 acts as a fate determinant between melanocytic and glial fate. A deeper understanding of factors that regulate fate decision, proliferation and differentiation of these stem cells provides new aspects to melanoma research as melanoma cells share many similarities with neural crest cells. In summary, we here show the important role of Sox9 in melanocytic versus glial fate decision of Nestin+ stem cells in the skin of adult mice.
Collapse
Affiliation(s)
- Isabel Stüfchen
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Felix Beyer
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Staebler
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Fischer
- Faculty of Computer Science, Deggendorf Institute of Technology, Deggendorf, Germany
| | - Melanie Kappelmann
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Faculty of Computer Science, Deggendorf Institute of Technology, Deggendorf, Germany
| | | | - Anja K. Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Yan W, Hao F, Zhe X, Wang Y, Liu D. Neural, adipocyte and hepatic differentiation potential of primary and secondary hair follicle stem cells isolated from Arbas Cashmere goats. BMC Vet Res 2022; 18:313. [PMID: 35971123 PMCID: PMC9377108 DOI: 10.1186/s12917-022-03420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background Arbas Cashmere goats are excellent domestic breeds with high yields of wool and cashmere. Their wool and cashmere can bring huge benefits to the livestock industry. Our studies intend to more fully understand the biological characteristics of hair follicle stem cells (HFSCs) in order to further explore the mechanisms of wool and cashmere regular regeneration. And they have been increasingly considered as promising multipotent cells in regenerative medicine because of their capacity to self-renew and differentiate. However, many aspects of the specific growth characteristics and differentiation ability of HFSCs remain unknown. This study aimed to further explore the growth characteristics and pluripotency of primary hair follicle stem cells (PHFSCs) and secondary hair follicle stem cells (SHFCs). Results We obtained PHFSCs and SHFSCs from Arbas Cashmere goats using combined isolation and purification methods. The proliferation and vitality of the two types of HFSCs, as well as the growth patterns, were examined. HFSC-specific markers and genes related to pluripotency, were subsequently identified. The PHFSCs and SHFSCs of Arbas Cashmere goat have a typical cobblestone morphology. Moreover, the PHFSCs and SHFSCs express HFSC surface markers, including CD34, K14, K15, K19 and LGR5. We also identified pluripotency-associated gene expression, including SOX2, OCT4 and SOX9, in PHFSCs and SHFSCs. Finally, PHFSCs and SHFSCs displayed multipotent abilities. PHFSCs and SHFSCs can be directed to differentiate into adipocyte-like, neural-like, and hepatocyte-like cells. Conclusions In conclusion, this study confirmed that the biological characteristics and differentiation potential of PHFSCs and SHFSCs from Arbas Cashmere goats. These findings broaden and refine our knowledge of types and characteristics of adult stem cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03420-3.
Collapse
Affiliation(s)
- Wei Yan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010021, China
| | - Fei Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010021, China
| | - Xiaoshu Zhe
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010021, China
| | - Yingmin Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010021, China
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
6
|
Feng Z, Gong H, Mabrouk I, Fu J, Li C, Liu Z, Tian X, Sun L, Guo K, Sui Y, Zhou Y, Song Y, Min C, Niu J, Yan X, Xu X, Sun Y. Breed-specific expression mode of the Wnt signalling pathway is involved in feather follicle morphogenesis between Anser cygnoide and Anser anser. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2066676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ziqiang Feng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Haizhou Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Ichraf Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Jinhong Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Chuanghang Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Zebei Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Xu Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Le Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Keying Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yujian Sui
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yupu Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Changguo Min
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Jiangting Niu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Xiaomin Yan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Xiaohui Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, People’s Republic of China
- Key Laboratory of Animal Production, Product Quality and Security (Jilin Agricultural University), Ministry of Education, Changchun, People’s Republic of China
| |
Collapse
|
7
|
Zhang W, Wang N, Zhang T, Wang M, Ge W, Wang X. Roles of Melatonin in Goat Hair Follicle Stem Cell Proliferation and Pluripotency Through Regulating the Wnt Signaling Pathway. Front Cell Dev Biol 2021; 9:686805. [PMID: 34150780 PMCID: PMC8212062 DOI: 10.3389/fcell.2021.686805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/03/2021] [Indexed: 01/20/2023] Open
Abstract
Emerging studies show that melatonin promotes cashmere development through hypodermic implantation. However, the impact and underlying mechanisms are currently unknown. In vitro study has previously demonstrated that melatonin induces cashmere growth by regulating the proliferation of goat secondary hair follicle stem cells (gsHFSCs), but there is limited information concerning the effects of melatonin on cell pluripotency. It is also known that Wnt signaling may actively participate in regulating cell proliferation and stem cell pluripotency. Therefore, in the current investigation, goat hair follicle stem cells were exposed to multiple concentrations of melatonin and different culture times to reveal the relationship between melatonin and the activation of Wnt signaling. A proportionally high Catenin beta-1 (CTNNB1) response was induced by 500 ng/L of melatonin, but it was then suppressed with the dosages over 1,000 ng/L. Greater amounts of CTNNB1 entered the cell nuclei by extending the exposure time to 72 h, which activated transcription factor 4/lymphoid enhancer-binding factor 1 and promoted the expression of the proliferation-related genes C-MYC, C-JUN, and CYCLIND1. Moreover, nuclear receptor ROR-alpha (RORα) and bone morphogenetic protein 4 (BMP4) were employed to analyze the underlying mechanism. RORα presented a sluggish concentration/time-dependent rise, but BMP4 was increased dramatically by melatonin exposure, which revealed that melatonin might participate in regulating the pluripotency of hair follicle stem cells. Interestingly, NOGGIN, which is a BMP antagonist and highly relevant to cell stemness, was also stimulated by melatonin. These findings demonstrated that melatonin exposure and/or NOGGIN overexpression in hair follicle stem cells might promote the expression of pluripotency markers Homeobox protein NANOG, Organic cation/carnitine transporter 4, and Hematopoietic progenitor cell antigen CD34. Our findings here provided a comprehensive view of Wnt signaling in melatonin stimulated cells and melatonin mediated stemness of gsHFSCs by regulating NOGGIN, which demonstrates a regulatory mechanism of melatonin enhancement on the growth of cashmere.
Collapse
Affiliation(s)
- Weidong Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Niu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Tongtong Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Meng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wei Ge
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Genetic Signatures of Selection for Cashmere Traits in Chinese Goats. Animals (Basel) 2020; 10:ani10101905. [PMID: 33080940 PMCID: PMC7603090 DOI: 10.3390/ani10101905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cashmere goats are a unique husbandry resource in China. These goats are well known for producing the highest cashmere yield and best fiber quality in the world. Although cashmere is highly valued and also known as “fiber gem” and “soft gold”, few studies have examined the genetic basis of cashmere traits in cashmere goats. Here, we identified selection signals by comparing Fst and XP-EHH (the cross population extend haplotype homozygosity test) of a non-cashmere breed (Huanghuai goat) with those of two cashmere breeds (Inner Mongolia and Liaoning cashmere goats). Two genes (WNT10A and CSN3) were potentially associated with cashmere traits. This information may be valuable for studying the genetic uniqueness of cashmere goats and elucidating the mechanisms underlying cashmere traits in cashmere goats. Abstract Inner Mongolia and Liaoning cashmere goats in China are well-known for their cashmere quality and yield. Thus, they are great models for identifying genomic regions associated with cashmere traits. Herein, 53 Inner Mongolia cashmere goats, Liaoning cashmere goats and Huanghuai goats were genotyped, and 53,347 single-nucleotide polymorphisms (SNPs) were produced using the Illumina Caprine 50K SNP chip. Additionally, we identified some positively selected SNPs by analyzing Fst and XP-EHH. The top 5% of SNPs had selection signatures. After gene annotation, 222 and 173 candidate genes were identified in Inner Mongolia and Liaoning cashmere goats, respectively. Several genes were related to hair follicle development, such as TRPS1, WDR74, LRRC14, SPTLC3, IGF1R, PADI2, FOXP1, WNT10A and CSN3. Gene enrichment analysis of these cashmere trait-associated genes related 67 enriched signaling pathways that mainly participate in hair follicle development and stem cell pluripotency regulation. Furthermore, we identified 20 overlapping genes that were selected in both cashmere goat breeds. Among these overlapping genes, WNT10A and CSN3, which are associated with hair follicle development, are potentially involved in cashmere production. These findings may improve molecular breeding of cashmere goats in the future.
Collapse
|
9
|
He N, Su R, Wang Z, Zhang Y, Li J. Exploring differentially expressed genes between anagen and telogen secondary hair follicle stem cells from the Cashmere goat (Capra hircus) by RNA-Seq. PLoS One 2020; 15:e0231376. [PMID: 32298297 PMCID: PMC7162518 DOI: 10.1371/journal.pone.0231376] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 03/23/2020] [Indexed: 12/17/2022] Open
Abstract
Hair follicle stem cells (HFSCs) have been shown to be essential in the development and regeneration of hair follicles (HFs). The Inner Mongolia Cashmere goat (Capra hircus) has two types of HFs, primary and secondary, with cashmere being produced from the secondary hair follicle. To identify the genes associated with cashmere growth, transcriptome profiling of anagen and telogen secondary HFSCs was performed by RNA-Seq. The RNA-Seq analysis generated over 58 million clean reads from each group, with 2717 differentially expressed genes (DEGs) detected between anagen and telogen, including 1500 upregulated and 1217 downregulated DEGs. A large number of DEGs were predominantly associated with cell part, cellular process, binding, biological regulation and organelle. In addition, the PI3K-Akt, MAPK, Ras and Rap1 signaling pathways may be involved in the growth of HFSCs cultured in vitro. The RNA-Seq results showed that the well-defined HFSC signature genes and cell cycle-associated genes showed no significant differences between anagen and telogen HFSCs, indicating a relatively quiescent cellular state of the HFSCs cultured in vitro. These results are useful for future studies of complex molecular mechanisms of hair follicle cycling in cashmere goats.
Collapse
Affiliation(s)
- Nimantana He
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Agriculture Research Center, Chifeng University, Chifeng, Inner Mongolia, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, Inner Mongolia Autonomous Region, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, Inner Mongolia Autonomous Region, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, Inner Mongolia Autonomous Region, China
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, Inner Mongolia Autonomous Region, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, Inner Mongolia Autonomous Region, China
- * E-mail:
| |
Collapse
|
10
|
Wang L, Cai R, Liu F, Lv Y, Zhang Y, Duan S, Izaz A, Zhou J, Wang H, Duan R, Wu X, Li T. Molecular cloning, characterization, mRNA expression changes and nucleocytoplasmic shuttling during kidney embryonic development of SOX9 in Alligator sinensis. Gene 2020; 731:144334. [PMID: 31935508 DOI: 10.1016/j.gene.2020.144334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/29/2019] [Accepted: 01/06/2020] [Indexed: 10/25/2022]
Abstract
SOX9 plays a crucial, extensive and conservative role in the process of somatic tissue development and adult regeneration through the positive self-regulation mediated by SOM across all vertebrates. In this study, we have cloned SOX9 from the kidney of hatchling Alligator sinensis. The full-length of SOX9 cDNA is 3878 bp with an open reading frame encoding 494 amino acids. Amino acid alignment analyses indicated that the SOX9 exhibit highly conserved functional domains. Using the droplet digital PCR, the mRNA abundances of SOX9 during nephrogenesis in A. sinensis showed prominent changes in the embryonic development, suggesting that SOX9 might combines a vital role in the regulation of complex renal development. Interestingly, we detected the nucleocytoplasmic shuttling of SOX9 protein using immunofluorescence, implying that nucleocytoplasmic shuttling is critical to the regulation of SOX9 in the renal embryonic development. Collectively, these data provide an important foundation for further studies on renal developmental biology and molecular biology of non-mammalian SOX9. Furthermore, it provides new insights into the phenomenon of SOX9 nucleocytoplasmic shuttling in Alligator sinensis, which is probably of great significance to the development of kidney metanephros embryo.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Ruiqing Cai
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Fengnan Liu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Yang Lv
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Ying Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Shulong Duan
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Ali Izaz
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Jue Zhou
- Wannan Medical College, Wuhu, Anhui 241002, China
| | - Hui Wang
- Wannan Medical College, Wuhu, Anhui 241002, China
| | - Renjie Duan
- Wannan Medical College, Wuhu, Anhui 241002, China
| | - Xiaobing Wu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Tiechen Li
- Wannan Medical College, Wuhu, Anhui 241002, China
| |
Collapse
|
11
|
Dai B, Zhang M, Yuan JL, Ren LQ, Han XY, Liu DJ. Integrative Analysis of Methylation and Transcriptional Profiles to Reveal the Genetic Stability of Cashmere Traits in the Tβ4 Overexpression of Cashmere Goats. Animals (Basel) 2019; 9:ani9121002. [PMID: 31756916 PMCID: PMC6940810 DOI: 10.3390/ani9121002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/27/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Cashmere goats have double coats consisting of non-medullated fine inner hairs or cashmere fibers produced by secondary hair follicles (SHFs) and guard hairs produced by primary hair follicles (PHFs). Cashmere is an important economic product worldwide and the world market for cashmere is increasing while the current production of cashmere is limited. Thymosin β4 (Tβ4), a 4.9-kDa protein, contains 43 amino acids. Here, we produced Tβ4 overexpression (Tβ4-OE) offspring using two methods. The somatic cell nuclear transfer (SCNT) goats had increased hair follicle development and higher cashmere yields than wild type (WT) and natural mating (NM) goats. Taken together, our results showed that DNA methylation affected the expression of differentially expressed genes (DEGs) between generations and the genetic stability of cashmere traits. Abstract DNA methylation alteration is frequently observed in exogenous gene silencing and may play important roles in the genetic stability of traits. Cashmere is derived from the secondary hair follicles (SHFs) of cashmere goats, which are morphogenetically distinct from primary hair follicles (PHFs). Here, in light of having initially produced 15 Tβ4 overexpression (Tβ4-OE) cashmere goats which had more SHFs than the wild type (WT) goats, and produced more cashmere, we produced Tβ4-OE offsprings both via somatic cell nuclear transfer (SCNT) and via natural mating (NM). However, the desired trait exhibited lower fixation in the line-bred offspring compared to the SCNT offspring. Integrative analysis of methylation and transcriptional profiles showed that this might be due to the influence of methylation on the expression of differentially expressed genes (DEGs) between generations, which was mutually consistent with the results of the functional and pathway enrichment analysis of differentially methylated regions (DMRs) and DEGs. Overall, our study systematically describes the DNA methylation characteristics between generations of cashmere goats and provides a basis for improving genetic stability.
Collapse
|
12
|
Song H, Xu Y, Shi L, Xu T, Fan R, Cao M, Xu W, Song J. LncRNA THOR increases the stemness of gastric cancer cells via enhancing SOX9 mRNA stability. Biomed Pharmacother 2018; 108:338-346. [PMID: 30227327 DOI: 10.1016/j.biopha.2018.09.057] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 08/31/2018] [Accepted: 09/11/2018] [Indexed: 12/31/2022] Open
Abstract
This work aims to explore the roles and mechanisms of long non coding RNA (lncRNA) THOR in regulating the stemness of gastric cancer cells. RNA-sequencing combined with quantitative real-time PCR (qRT-PCR) indicated that lncRNA THOR level was significantly upregulated in gastric cancer tissues compared with that in normal adjacent tissues. Knockdown of THOR attenuated the stemnness of gastric cancer cells, evident by the decrease of stemness markers expression and capacity of cells spheroid formation. Further RNA-sequencing combined with qRT-PCR and western blot analysis demonstrated that expression of transcriptional factor SOX9 was remarkably decreased in gastric cancer cells with THOR stable knockdown. Additionally, RNA immunoprecipitation (RIP) combined with luciferase reporter assay revealed that THOR directly bound to SOX9 3' untranslated region (3'UTR), but not its 5'UTR or coding area. Notably, overexpression of SOX9 rescued THOR knockdown-mediated inhibition on the stemness of gastric cancer cells. Thus, our results suggest that THOR could potentiate the stemness of gastric cancer cells via directly binding to SOX9 3'UTR.
Collapse
Affiliation(s)
- Hu Song
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China
| | - Yixin Xu
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China
| | - Linseng Shi
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China
| | - Teng Xu
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China
| | - Ruizhi Fan
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China
| | - Meng Cao
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China
| | - Wei Xu
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China
| | - Jun Song
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China.
| |
Collapse
|