1
|
Wang F, Liu J. Regulating the lncRNA DSCR9/RPLP2/PI3K/AKT axis: an important mechanism of Xinfeng capsules in improving rheumatoid arthritis. Front Immunol 2024; 15:1465442. [PMID: 39376558 PMCID: PMC11456487 DOI: 10.3389/fimmu.2024.1465442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic and symmetrical polyarthritis. RA patients often experience inflammatory reaction and hypercoagulable state, which together affect the self-perception of patient (SPP). Currently, inhibiting inflammation and hypercoagulable state are common treatment methods for alleviating RA symptoms. Xinfeng Capsules (XFC) has a long history of treating RA, and can effectively improve the inflammatory response and hypercoagulable state of RA. However, the potential mechanisms have not yet been determined. Purpose and study design This study elucidated the action mechanism of XFC in RA inflammation and hypercoagulability through the lncDSCR9/RPLP2/PI3K/AKT axis. Results Clinical observations indicated that there was a strong link between XFC therapy and improvements in inflammatory and coagulation biomarkers, as well as SPP among RA patients. The subsequent network pharmacology analysis results identified the PI3K/AKT signaling pathway as a potential mediator for XFC treatment of RA. Furthermore, clinical validation and sequencing results revealed that lncRNA DSCR9 expression (a gene implicated in inflammation and coagulation) was negatively correlated with clinical markers of inflammation and coagulation, while positively correlated with SF-36 indicators. Notably, XFC treatment remarkably upregulated lncRNA DSCR9 expression and downregulated PI3K and AKT expressions, showing opposite expression trends to the untreated cases.The regulatory effect of XFC on the lncRNA DSCR9/RPLP2/PI3K/AKT axis in RA was investigated using techniques such as RNA pull-down assay, Western blot analysis, RT-PCR, and EdU assay. Moreover, the administration of the PI3K/AKT agonist RMH can counteract the effects of XFC on p-PI3K, p-AKT, inflammation, and hypercoagulability, reinforcing the role of pathway. Finally, animal studies utilizing HE staining and transmission electron microscopy (TEM) demonstrated that XFC notably decreased PI3K and AKT expressions in adjuvant-induced arthritis (AA) rats, mitigated inflammation and hypercoagulability, and enhanced the ultrastructure of synovial cells. These findings underscored the potential mechanisms of XFC in the treatment of RA. Conclusion Regulating the lncRNA DSCR9/RPLP2/PI3K/AKT axis may be an important mechanism by which XFC improved RA inflammatory response and hypercoagulable state.
Collapse
Affiliation(s)
- Fanfan Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, First Clinical Medical College, Hefei, Anhui, China
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jian Liu
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
2
|
Saadh MJ, Ahmed HH, Singh A, Mustafa MA, Al Zuhairi RAH, Ghildiyal P, Jawad MJ, Alsaikhan F, Khalilollah S, Akhavan-Sigari R. Small molecule and big function: MicroRNA-mediated apoptosis in rheumatoid arthritis. Pathol Res Pract 2024; 261:155508. [PMID: 39116571 DOI: 10.1016/j.prp.2024.155508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune condition and chronic inflammatory disease, mostly affecting synovial joints. The complex pathogenesis of RA is supportive of high morbidity, disability, and mortality rates. Pathological changes a common characteristic in RA synovial tissue is attributed to the inadequacy of apoptotic pathways. In that regard, apoptotic pathways have been the center of attention in RA therapeutic approaches. As the regulators in the complex network of apoptosis, microRNAs (miRNAs) are found to be vital modulators in both intrinsic and extrinsic pathways through altering their regulatory genes. Indeed, miRNA, a member of the family of non-coding RNAs, are found to be an important player in not even apoptosis, but proliferation, gene expression, signaling pathways, and angiogenesis. Aberrant expression of miRNAs is implicated in attenuation and/or intensification of various apoptosis routes, resulting in culmination of human diseases including RA. Considering the need for more studies focused on the underlying mechanisms of RA in order to elevate the unsatisfactory clinical treatments, this study is aimed to delineate the importance of apoptosis in the pathophysiology of this disease. As well, this review is focused on the critical role of miRNAs in inducing or inhibiting apoptosis of RA-synovial fibroblasts and fibroblast-like synoviocytes and how this mechanism can be exerted for therapeutic purposes for RA.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | - Anamika Singh
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Mohammed Ahmed Mustafa
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh-247341, India; Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand- 831001, India.
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland
| |
Collapse
|
3
|
Razali NSC, Lam KW, Rajab NF, Jamal ARA, Kamaludin NF, Chan KM. Curcumin piperidone derivatives induce caspase-dependent apoptosis and suppress miRNA-21 expression in LN-18 human glioblastoma cells. Genes Environ 2024; 46:4. [PMID: 38303058 PMCID: PMC10832295 DOI: 10.1186/s41021-023-00297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Previously, we have reported on the two curcuminoid analogues with piperidone derivatives, namely FLDP-5 and FLDP-8 have more potent anti-proliferative and anti-migration effects than curcumin. In this study, we further investigated the mode of cell death and the mechanism involved in the cell death process induced by these analogues on human glioblastoma LN-18 cells. RESULTS The FLDP-5 and FLDP-8 curcuminoid analogues induced LN-18 cell death through apoptosis in a concentration-dependent manner following 24 h of treatment. These analogues induced apoptosis in LN-18 cells through significant loss of mitochondrial mass and mitochondrial membrane potential (MMP) as early as 1-hour of treatment. Interestingly, N-acetyl-l-cysteine (NAC) pretreatment did not abolish the apoptosis induced by these analogues, further confirming the cell death process is independent of ROS. However, the apoptosis induced by the analogues is caspases-dependent, whereby pan-caspase pretreatment inhibited the curcuminoid analogues-induced apoptosis. The apoptotic cell death progressed with the activation of both caspase-8 and caspase-9, which eventually led to the activation of caspase-3, as confirmed by immunoblotting. Moreover, the existing over-expression of miRNA-21 in LN-18 cells was suppressed following treatment with both analogues, which suggested the down-regulation of the miRNA-21 facilitates the cell death process. CONCLUSION The FLDP-5 and FLDP-8 curcuminoid analogues downregulate the miRNA-21 expression and induce extrinsic and intrinsic apoptotic pathways in LN-18 cells.
Collapse
Affiliation(s)
- Nur Syahirah Che Razali
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Kok Wai Lam
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Nor Fadilah Rajab
- Center for Health Ageing and Wellness Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - A Rahman A Jamal
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Cheras, 56000, Malaysia
| | - Nurul Farahana Kamaludin
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
| | - Kok Meng Chan
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia.
- Product Stewardship and Toxicology, Group Health, Safety and Environment (GHSE), Petroliam Nasional Berhad (PETRONAS), Kuala Lumpur, 50088, Malaysia.
| |
Collapse
|
4
|
Peng Y, Zhang M, Hu J. Non-coding RNAs involved in fibroblast-like synoviocyte functioning in arthritis rheumatoid: From pathogenesis to therapy. Cytokine 2024; 173:156418. [PMID: 37952312 DOI: 10.1016/j.cyto.2023.156418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Rheumatoid arthritis (RA) is a polygenic autoimmune disorder with an uncertain etiology, primarily impacting the joints. Moreover, the disease may manifest beyond articular involvement, leading to extra-articular manifestations. Fibroblast-like synoviocytes (FLS) are cells of mesenchymal origin that possess crucial physiological significance within the synovium, contributing to the synthesis of specific constituents found in the synovial fluid and articular cartilage. Consequently, there has been a growing focus on FLS as a potential therapeutic target in the context of RA. Recent investigations have revealed that non-coding RNAs (ncRNAs) serve as pivotal regulators of FLS function, with their dysregulated expression patterns being detected within FLS populations. NcRNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), assume essential functions as regulators of gene expression at both the post-transcriptional and transcriptional levels, and also serve as guiding molecules for chromatin-modifying complexes. Majority of these ncRNAs contribute to various FLS activities including metastasis, proliferation, and cytokine production. In the current work, we comprehensively review the existing literature on ncRNAs, which play pivotal roles in FLS activity and the pathogenesis of RA. Furthermore, this study provides a comprehensive summary and description of the lncRNA/circRNA-miRNA-mRNA regulatory axes in FLS activity, along with potential implications for the RA development. As well, in the final section, we illustrated that therapeutic agents including herbal medicine, and exosomes by modulating ncRNAs regulate FLS activity.
Collapse
Affiliation(s)
- Yuwei Peng
- Rheumatology and Immunology, PingXiangPeople's Hospital, No. 8, Wugongshangzhong Avenue, Anyuan District, PiangXiang City, Jiangxi Province, 337000, China
| | - Meng Zhang
- Rheumatology and Immunology, PingXiangPeople's Hospital, No. 8, Wugongshangzhong Avenue, Anyuan District, PiangXiang City, Jiangxi Province, 337000, China
| | - Jiangkang Hu
- Rheumatology and Immunology, PingXiangPeople's Hospital, No. 8, Wugongshangzhong Avenue, Anyuan District, PiangXiang City, Jiangxi Province, 337000, China.
| |
Collapse
|
5
|
Cai B, Song W, Chen S, Sun J, Zhou R, Han Z, Wan J. Bone Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Ameliorated Lipopolysaccharide-Induced Lung Injury Via the miR-21-5p/PCSK6 Pathway. J Immunol Res 2023; 2023:3291137. [PMID: 37937296 PMCID: PMC10626970 DOI: 10.1155/2023/3291137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023] Open
Abstract
Acute lung injury (ALI) is a life-threatening disease that currently lacks a cure. Although stem cell-derived small extracellular vesicles (sEVs) have shown promising effects in the treatment of ALI, their underlying mechanisms and responsible components have yet to be identified. Proprotein convertase subtilisin/kexin type 6 (PCSK6) is a gene involved in inflammation and a potential target of miR-21-5p, a microRNA enriched in stem cell-derived sEVs. The current study investigated the role of PCSK6 in lipopolysaccharide (LPS)-induced ALI and its interaction with miR-21-5p. Notably, our results showed that PCSK6 expression was positively correlated with LPS stimulation. Knockdown of PCSK6 ameliorated LPS-induced inhibition of proliferation and upregulation of permeability in human BEAS-2B cells, whereas PCSK6 overexpression displayed the opposite effects. BEAS-2B cells were able to actively internalize the cocultured bone mesenchymal stem cell (MSC)-derived sEVs (BMSC-sEVs), which alleviated the cell damage caused by LPS. Overexpressing PCSK6, however, eliminated the therapeutic effects of BMSC-sEV coculture. Mechanistically, BMSC-sEVs inhibited PCSK6 expression via the delivery of miR-21-5p, which is directly bound to the PCSK6 gene. Our work provides evidence for the role of PCSK6 in LPS-induced ALI and identified miR-21-5p as a component of BMSC-derived sEVs that suppressed PCSK6 expression and ameliorated LPS-induced cell damage. These results reveal a novel molecular mechanism for ALI pathogenesis and highlight the therapeutic potential of using sEVs released by stem cells to deliver miR-21-5p for ALI treatment.
Collapse
Affiliation(s)
- Bo Cai
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 Chuansha South Road, Pudong New Area, 201299, Shanghai, China
| | - Weidong Song
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 Chuansha South Road, Pudong New Area, 201299, Shanghai, China
| | - Song Chen
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 Chuansha South Road, Pudong New Area, 201299, Shanghai, China
| | - Jie Sun
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 Chuansha South Road, Pudong New Area, 201299, Shanghai, China
| | - Rui Zhou
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 Chuansha South Road, Pudong New Area, 201299, Shanghai, China
| | - Zhen Han
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 Chuansha South Road, Pudong New Area, 201299, Shanghai, China
| | - Jian Wan
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 Chuansha South Road, Pudong New Area, 201299, Shanghai, China
| |
Collapse
|
6
|
Nandanpawar P, Sahoo L, Sahoo B, Murmu K, Chaudhari A, Pavan kumar A, Das P. Identification of differentially expressed genes and SNPs linked to harvest body weight of genetically improved rohu carp, Labeo rohita. Front Genet 2023; 14:1153911. [PMID: 37359361 PMCID: PMC10285081 DOI: 10.3389/fgene.2023.1153911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
In most of the aquaculture selection programs, harvest body weight has been a preferred performance trait for improvement. Molecular interplay of genes linked to higher body weight is not elucidated in major carp species. The genetically improved rohu carp with 18% average genetic gain per generation with respect to harvest body weight is a promising candidate for studying genes' underlying performance traits. In the present study, muscle transcriptome sequencing of two groups of individuals, with significant difference in breeding value, belonging to the tenth generation of rohu carp was performed using the Illumina HiSeq 2000 platform. A total of 178 million paired-end raw reads were generated to give rise to 173 million reads after quality control and trimming. The genome-guided transcriptome assembly and differential gene expression produced 11,86,119 transcripts and 451 upregulated and 181 downregulated differentially expressed genes (DEGs) between high-breeding value and low-breeding value (HB & LB) groups, respectively. Similarly, 39,158 high-quality coding SNPs were identified with the Ts/Tv ratio of 1.23. Out of a total of 17 qPCR-validated transcripts, eight were associated with cellular growth and proliferation and harbored 13 SNPs. The gene expression pattern was observed to be positively correlated with RNA-seq data for genes such as myogenic factor 6, titin isoform X11, IGF-1 like, acetyl-CoA, and thyroid receptor hormone beta. A total of 26 miRNA target interactions were also identified to be associated with significant DETs (p-value < 0.05). Genes such as Myo6, IGF-1-like, and acetyl-CoA linked to higher harvest body weight may serve as candidate genes in marker-assisted breeding and SNP array construction for genome-wide association studies and genomic selection.
Collapse
Affiliation(s)
- P. Nandanpawar
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - L. Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - B. Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - K. Murmu
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - A. Chaudhari
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - A. Pavan kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - P. Das
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| |
Collapse
|
7
|
Hade MD, Suire CN, Suo Z. An Effective Peptide-Based Platform for Efficient Exosomal Loading and Cellular Delivery of a microRNA. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3851-3866. [PMID: 36638205 DOI: 10.1021/acsami.2c20728] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exosomes, membrane-bound nanosized vesicles of biologic origin, are known to contain various molecules, e.g., proteins, lipids, and nucleic acids, which contribute to the exosomes' ability to mediate cell-to-cell communication. Recent impediments of artificial nanoparticles in drug delivery, including low cellular uptake, activation of the immune system, and tissue obstacles, have led scientists to engineer exosomes as drug delivery vehicles. Though exosomes possess inherent properties of stability, biocompatibility, low immunogenicity, and capability to cross biological barriers, there is a need to develop technologies that allow the efficient loading of therapeutic materials into exosomes. Here, we introduced a simple peptide-equipped technology that can enhance the cargo-loading potential of exosomes in a mild loading environment. Specifically, a known cell-penetrating peptide, YARA, derived from human immunodeficiency virus-1 trans-activator of transcription, was covalently conjugated with miR-21-5p, a mammalian microRNA. The conjugate YARA-miR-21-5p was then incubated with exosomes, isolated from either mesenchymal stem cells or cancer cells, for loading. Exosomal loading of YARA-miR-21-5p was time-dependent and demonstrated an impressive 18.6-fold increase in efficiency over exosomal loading of miR-21-5p through incubation. After effective cellular uptake, the loaded exosomes rapidly delivered YARA-miR-21-5p into mammalian cells. Relative to unloaded exosomes and free YARA-miR-21-5p, the loaded exosomes significantly enhanced the proliferation, migration, and invasion of human and mouse fibroblasts, which are vital steps in wound healing. This study lays the groundwork for using cell-penetrating peptides as an innovative approach to efficiently load therapeutic cargos, e.g., microRNAs, into exosomes, which can then be employed to deliver the cargos into cells to yield biological effects.
Collapse
Affiliation(s)
- Mangesh D Hade
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, United States
| | - Caitlin N Suire
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, United States
| | - Zucai Suo
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
8
|
MicroRNAs (miRNAs) in Cardiovascular Complications of Rheumatoid Arthritis (RA): What Is New? Int J Mol Sci 2022; 23:ijms23095254. [PMID: 35563643 PMCID: PMC9101033 DOI: 10.3390/ijms23095254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/08/2023] Open
Abstract
Rheumatoid Arthritis (RA) is among the most prevalent and impactful rheumatologic chronic autoimmune diseases (AIDs) worldwide. Within a framework that recognizes both immunological activation and inflammatory pathways, the exact cause of RA remains unclear. It seems however, that RA is initiated by a combination between genetic susceptibility, and environmental triggers, which result in an auto-perpetuating process. The subsequently, systemic inflammation associated with RA is linked with a variety of extra-articular comorbidities, including cardiovascular disease (CVD), resulting in increased mortality and morbidity. Hitherto, vast evidence demonstrated the key role of non-coding RNAs such as microRNAs (miRNAs) in RA, and in RA-CVD related complications. In this descriptive review, we aim to highlight the specific role of miRNAs in autoimmune processes, explicitly on their regulatory roles in the pathogenesis of RA, and its CV consequences, their main role as novel biomarkers, and their possible role as therapeutic targets.
Collapse
|
9
|
Liu Y, Liu L, Zhang Y, Qin L. S-Adenosylmethionine enhances the inhibitory effect of gemcitabine against pancreatic cancer cells via suppression of the EGFR/AKT pathways. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Ting Hao W, Huang L, Pan W, Ren YL. Antioxidant glutathione inhibits inflammation in synovial fibroblasts via PTEN/PI3K/AKT pathway: An in vitro study. Arch Rheumatol 2021; 37:212-222. [PMID: 36017213 PMCID: PMC9377173 DOI: 10.46497/archrheumatol.2022.9109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022] Open
Abstract
Objectives
In this study, we aimed to investigate whether glutathione (GSH) could decrease the secretion of reactive oxygen species (ROS), reduce inflammation, and modulate the phosphatase and tensin homolog deleted on chromosome 10/phosphatidylinositol 3-kinase/AKT (PTEN/PI3K/AKT) in synovial fibroblasts (SFs). Patients and methods
A total of 30 DBA/1J female mice were used in this study. The release of ROS in MH7A cells was examined using a ROS assay kit. The effects of GSH on the messenger ribonucleic acid (mRNA) expression and protein levels of inflammatory cytokines were determined via reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) in mouse SFs and MH7A cells, respectively. The PTEN/PI3K/AKT pathway was investigated via Western blotting. The effects of buthionine-sulfoximine (BSO), as an inhibitor of GSH, on these molecules were examined. Results
The ROS were decreased after GSH treatment, and the mRNA levels of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, matrix metalloproteinase (MMP)-1, MMP-3, were also significantly inhibited after GSH stimulation. However, the IL-10 levels were enhanced, and GSH increased the expression of PTEN. The GSH suppressed the activation of phosphorylated (p)-PI3K and p-AKT. The supplementation of the BSO restored the activation of PI3K/AKT pathway with a high production of ROS. The levels of TNF-α, IL-1β and IL-6 were also elevated, when the BSO was added. Conclusion
These findings suggest that GSH can act as an inflammatory suppressor by downregulating the PTEN/PI3K/AKT pathway in MH7A cells. These data indicated a novel function of GSH for improving the inflammation of RA SFs and may help to alleviate the pathological process of RA.
Collapse
Affiliation(s)
- Wen Ting Hao
- Department of Rheumatology and Immunology, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Lu Huang
- Department of Rheumatology and Immunology, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Wei Pan
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu
| | - Yi Le Ren
- Department of Rheumatology and Immunology, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
11
|
Wu D, Gu Y, Zhu D. Cardioprotective effects of hydrogen sulfide in attenuating myocardial ischemia‑reperfusion injury (Review). Mol Med Rep 2021; 24:875. [PMID: 34726247 DOI: 10.3892/mmr.2021.12515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/05/2021] [Indexed: 11/05/2022] Open
Abstract
Ischemic heart disease is one of the major causes of cardiovascular‑related mortality worldwide. Myocardial ischemia can be attenuated by reperfusion that restores the blood supply. However, injuries occur during blood flow restoration that induce cardiac dysfunction, which is known as myocardial ischemia‑reperfusion injury (MIRI). Hydrogen sulfide (H2S), the third discovered endogenous gasotransmitter in mammals (after NO and CO), participates in various pathophysiological processes. Previous in vitro and in vivo research have revealed the protective role of H2S in the cardiovascular system that render it useful in the protection of the myocardium against MIRI. The cardioprotective effects of H2S in attenuating MIRI are summarized in the present review.
Collapse
Affiliation(s)
- Dan Wu
- Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Yijing Gu
- Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| | - Deqiu Zhu
- Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China
| |
Collapse
|
12
|
Jin Y, Xu M, Zhu H, Dong C, Ji J, Liu Y, Deng A, Gu Z. Therapeutic effects of bone marrow mesenchymal stem cells-derived exosomes on osteoarthritis. J Cell Mol Med 2021; 25:9281-9294. [PMID: 34448527 PMCID: PMC8500984 DOI: 10.1111/jcmm.16860] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/20/2021] [Accepted: 07/31/2021] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have shown chondroprotective effects in clinical models of osteoarthritis (OA). However, effects of MSC‐derived exosomes on OA remain unclear. The study aimed to investigate the therapeutic potential of exosomes from human bone marrow MSCs (BM‐MSCs) in alleviating OA. The anterior cruciate ligament transection (ACLT) and destabilization of the medial meniscus (DMM) surgery were performed on the knee joints of a rat OA model, followed by intra‐articular injection of BM‐MSCs or their exosomes. In addition, BM‐MSC‐derived exosomes were administrated to primary human chondrocytes to observe the functional and molecular alterations. Both of BM‐MSCs and BM‐MSC‐derived exosomes alleviated cartilage destruction and subchondral bone remodelling in OA rat model. Administration of BM‐MSCs and exosomes could reduce joint damage and restore the trabecular bone volume fraction, trabecular number and connectivity density of OA rats. In addition, in vitro assays showed that BM‐MSCs‐exosomes could maintain the chondrocyte phenotype by increasing collagen type II synthesis and inhibiting IL‐1β–induced senescence and apoptosis. Furthermore, exosomal lncRNA MEG‐3 also reduced the senescence and apoptosis of chondrocytes induced by IL‐1β, indicating that lncRNA MEG‐3 might partially account the anti‐OA effects of BM‐MSC exosomes. The exosomes from BM‐MSCs exerted beneficial therapeutic effects on OA by reducing the senescence and apoptosis of chondrocytes, suggesting that MSC‐derived exosomes might provide a candidate therapy for OA treatment.
Collapse
Affiliation(s)
- Yi Jin
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China.,Medical School, Nantong University, Nantong, China
| | - Min Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Hai Zhu
- Department of Orthopaedics, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Chen Dong
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China.,Medical School, Nantong University, Nantong, China
| | - Juan Ji
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yake Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Aidong Deng
- Department of Hand surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
13
|
Li X, Wang Y. Cinnamaldehyde Attenuates the Progression of Rheumatoid Arthritis through Down-Regulation of PI3K/AKT Signaling Pathway. Inflammation 2021; 43:1729-1741. [PMID: 32851511 DOI: 10.1007/s10753-020-01246-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cinnamaldehyde (CA), as an active compound isolated from the bark of Cinnamomum cassia, has been reported to possess the anti-fungal, anti-bacterial, anti-inflammatory, anti-mutagenic, and anti-oxidant properties. However, the possible effects and underlying mechanisms of CA on rheumatoid arthritis (RA) have not been revealed yet. In the present study, we found that CA obviously improved the type II collagen-induced RA in rats, accompanied with decreasing pro-inflammatory factors, proliferation and metastasis. In addition, CA decreased the expression levels of TNF-α, IL-1β, and IL-6 in RA-FLSs. Besides, CA remarkably inhibited the proliferation, downregulated the EdU-positive cells, and promoted apoptosis of RA-FLSs by CCK-8, EdU and flow cytometry analysis. Moreover, the results of wound healing, transwell migration and invasion assays showed that CA inhibited the migration and invasion of RA-FLSs. Further, western blot experiment showed CA inhibited the activation of PI3K/AKT signaling pathway in RA-FLSs. Finally, 740Y-P, the PI3K/AKT signaling pathway activator, could reverse the effects of CA on the proliferation and metastasis in RA-FLSs. In conclusion, we confirmed that CA exhibited potential therapeutic properties against RA via suppressing proliferation and metastasis of RA-FLSs by blockage of PI3K/AKT signaling pathway. Therefore, our study provides evidence that CA may emerge as a therapeutic option for RA treatment.
Collapse
Affiliation(s)
- Xiang Li
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Yue Wang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
14
|
Tang J, Li X, Cheng T, Wu J. miR-21-5p/SMAD7 axis promotes the progress of lung cancer. Thorac Cancer 2021; 12:2307-2313. [PMID: 34254453 PMCID: PMC8410517 DOI: 10.1111/1759-7714.14060] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 01/09/2023] Open
Abstract
Background Lung cancer is one of the most common malignant tumors threatening human health. The aim of this study was to investigate the function of miR‐21‐5p in lung cancer progression. Methods We analyzed the expression levels of miR‐21‐5p in lung cancer tissues and cell lines. The qRT‐PCR and MTT assays were performed after transfection with miR‐21‐5p mimic, inhibitor and negative control into lung cancer cells. Results Luciferase reporter assays showed miR‐21‐5p directly target SMAD7. The miR‐21‐5p inhibitor significantly suppressed lung cancer cell proliferation, invasion and migration. We found that SMAD7 was upregulated in lung cancer tissue. In addition, we found that SMAD7 inhibited lung cancer cell proliferation and miR‐21‐5p mimic damaged the inhibitory effect of SMAD7. Conclusions miRNA‐21‐5p may promote cell proliferation, migration and invasion by spoiling SMAD7 expression in lung cancer cells.
Collapse
Affiliation(s)
- Jinming Tang
- Department II of Thoracic Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medical, Central South University, Changsha, China
| | - Xu Li
- Department II of Thoracic Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medical, Central South University, Changsha, China
| | - Tianli Cheng
- Department I of Thoracic Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medical, Central South University, Changsha, China
| | - Jie Wu
- Department II of Thoracic Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medical, Central South University, Changsha, China
| |
Collapse
|
15
|
Wang J, Zhao Y, Tang Y, Li F, Chen X. The role of lncRNA-MEG/miR-21-5p/PDCD4 axis in spinal cord injury. Am J Transl Res 2021; 13:646-658. [PMID: 33594315 PMCID: PMC7868829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/10/2020] [Indexed: 06/12/2023]
Abstract
Spinal cord injury (SCI) is an insult to the spinal cord resulting in a change, either temporary or permanent, in its normal motor or sensory function, but the mechanism of neuron loss after spinal cord injury is still unclear. Long non-coding RNAs (lncRNAs) can play an important role in regulating cell physiological activities through competitively binding to miRNAs. However, there is still a lack of research on the effect of lncRNAs on SCI. In this study, we selected SCI gene expression data and miRNA expression data from the NCBI database for differential expression analysis, and predicted miRNA target genes. Subsequently, biological analysis of gene expression and miRNA changes was performed on a rat SCI model. The results showed that the expression level of lncRNA-MEG increased significantly in rat SCI model. Subsequently, we found that lncRNA-MEG can promote the expression level of PDCD4 by inhibiting miR-21-5p, which leads to neuronal cell apoptosis. Furthermore, knocking down of lncRNA-MEG with shRNA can reverse the effect of miR-21-5p and inhibit the effect of PDCD4 to reduce the expression of apoptosis-related proteins. Furthermore, we found lncRNA-MEG can regulate PDCD4 expression through miR-21-5p by targeting 3'UTR of PDCD4 in the OGD cell model. In summary, we first discovered lncRNA-MEG regulates neuronal cell apoptosis through miR-21-5p by targeting PDCD4 in SCI.
Collapse
Affiliation(s)
- Juncheng Wang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical UniversityShanghai, China
- Department of Orthopedics, Naval Special Medical Center, Second Military Medical UniversityShanghai, China
| | - Yin Zhao
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Yifan Tang
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Fengning Li
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical UniversityShanghai, China
| | - Xiongsheng Chen
- Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Military Medical UniversityShanghai, China
| |
Collapse
|
16
|
MicroRNA-494 targets PTEN and suppresses PI3K/AKT pathway to alleviate hypertrophic scar formation. J Mol Histol 2019; 50:315-323. [DOI: 10.1007/s10735-019-09828-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/29/2019] [Indexed: 01/02/2023]
|