1
|
Wu D, Liu R, Cen X, Dong W, Chen Q, Lin J, Wang X, Ling Y, Mao R, Sun H, Huang R, Su H, Xu H, Qin D. Preclinical study of engineering MSCs promoting diabetic wound healing and other inflammatory diseases through M2 polarization. Stem Cell Res Ther 2025; 16:113. [PMID: 40038782 DOI: 10.1186/s13287-025-04248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/20/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Diabetic foot ulcer (DFU) represents a common and severe complication of diabetes mellitus. Effective and safe treatments need to be developed. Mesenchymal stem cells (MSCs) have demonstrated crucial roles in tissue regeneration, wound repair and inflammation regulation. However, the function is limited. The safety and efficacy of gene-modified MSCs is unknown. Therefore, this study aimed to investigate whether genetically modified MSCs with highly efficient expression of anti-inflammatory factors promote diabetic wound repair by regulating macrophage phenotype transition. This may provide a new approach to treating diabetic wound healing. METHODS In this study, human umbilical cord-derived MSCs (hUMSCs) were genetically modified using recombinant lentiviral vectors to simultaneously overexpress three anti-inflammatory factors, interleukin (IL)-4, IL-10, IL-13 (MSCs-3IL). Cell counting kit-8, flow cytometry and differentiation assay were used to detect the criteria of MSCs. Overexpression efficiency was evaluated using flow cytometry, quantitative real-time PCR, Western blot, enzyme-linked immunosorbent assay, and cell scratch assay. We also assessed MSCs-3IL's ability to modulate Raw264.7 macrophage phenotype using flow cytometry and quantitative real-time PCR. In addition, we evaluated diabetic wound healing through healing rate calculation, HE staining, Masson staining, and immunohistochemical analysis of PCNA, F4/80, CD31, CD86, CD206, IL-4, IL-10 and IL-13. In addition, we evaluated the safety of the MSCs-3IL cells and the effect of the cells on several other models of inflammation. RESULTS MSCs-3IL efficiently expressed high levels of IL-4 and IL-10 (mRNA transcription increased by 15,000-fold and 800,000-fold, protein secretion 400 and 200 ng/mL), and IL-13 (mRNA transcription increased by 950,000-fold, protein secretion 6 ng/mL). MSCs-3IL effectively induced phenotypic polarization of pro-inflammatory M1-like macrophages (M1) towards anti-inflammatory M2-like macrophages (M2). The enhancement of function does not change the cell phenotype. The dynamic distribution in vivo was normal and no karyotype variation and tumor risk was observed. In a mouse diabetic wound model, MSCs-3IL promoted diabetic wound healing with a wound closure rate exceeding 96% after 14 days of cell treatment. The healing process was aided by altering macrophage phenotype (reduced CD86 and increased CD206 expression) and accelerating re-epithelialization. CONCLUSIONS In summary, our study demonstrates that genetically modified hUMSCs effectively overexpressed three key anti-inflammatory factors (IL-4, IL-10, IL-13). MSCs-3IL-based therapy enhances diabetic wound healing with high efficiency and safety. This suggests that genetically modified hUMSCs could be used as a novel therapeutic approach for DFU repair.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rencun Liu
- Shandong Province Key Laboratory of Detection Technology for Tumour Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Xiaotong Cen
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Wanwen Dong
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Qing Chen
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiali Lin
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Xia Wang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yixia Ling
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rui Mao
- Laboratory Animal Research Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haitao Sun
- Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, The National Key Clinical Specialty, Southern Medical University, Guangzhou, Guangdong, China
| | - Rui Huang
- The Fifth Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- , No.621 Gangwan Road, Huangpu District, Guangzhou, China.
| | - Hongjie Xu
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
- , No.621 Gangwan Road, Huangpu District, Guangzhou, China.
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- , No.621 Gangwan Road, Huangpu District, Guangzhou, China.
| |
Collapse
|
2
|
Shi S, Zhang H, Jiang P, Zhou Y, Zhu Y, Feng T, Xie C, He H, Chen J. Inhibition of LPCAT3 exacerbates endoplasmic reticulum stress and HBV replication. Int Immunopharmacol 2024; 143:113337. [PMID: 39423656 DOI: 10.1016/j.intimp.2024.113337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Altered phospholipid metabolism plays a key role in changing the immune microenvironment and severely affecting T-cell function. LPCAT3 is one of the vital enzymes regulating phospholipid metabolism. This study aims to verify the effect of LPCAT3 on HBV replication in vitro and the chronic progression of hepatitis B infection based on the results of lipidomic. METHODS Untargeted lipidomic analysis was employed to scrutinize discrepancies in lipid metabolites between 40 HBV-infected patients and those who spontaneously cleared the virus. Subsequently, enzyme-linked immunosorbent assay (ELISA), enzyme-linked immunospot assay (ELISPOT), western blotting (WB) and quantitative polymerase chain reaction (qPCR) were utilized to investigate LPCAT3 expression and assess HBV replication and endoplasmic reticulum stress (ERS). RESULTS A comparative analysis between HBV-infected patients and those experiencing spontaneous clearance revealed significant disparities in 24 lipid metabolites. Among these, phosphatidylcholine (PC) and lysophosphatidylcholine (LPC), constituting half (12/24) of the identified metabolites, were identified as substrates and products of LPCAT3. In vitro studies demonstrated that inhibiting LPCAT3 led to elevated expression levels of hepatitis B surface antigen (HBsAg), HBV-DNA, and interferon-γ (IFN-γ) (P < 0.05), indicative of heightened HBV replication. Furthermore, LPCAT3 inhibition significantly upregulated the expression of genes associated with ERS (P < 0.05). CONCLUSIONS Inhibiting LPCAT3 significantly correlates with HBV replication and induces inflammation by enhancing ERS. We hypothesize that LPCAT3 serves as a potential biomarker for hepatitis B virus replication and chronic progression. Furthermore, these findings elucidate the malignant progression of HBV infection from the standpoint of lipid metabolism, offering a novel insight for subsequent mechanistic exploration or therapeutic studies. LAY SUMMARY LPCAT3 inhibition enhances endoplasmic reticulum stress and HBV replication by altering the membrane phospholipid composition and promotes chronic hepatitis B progression.
Collapse
Affiliation(s)
- Shiya Shi
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, PR China; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, Sichuan, PR China
| | - He Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, PR China; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, Sichuan, PR China
| | - Pengjun Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, PR China; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, Sichuan, PR China
| | - Yanjie Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, PR China; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, Sichuan, PR China
| | - Yalan Zhu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, PR China; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, Sichuan, PR China
| | - Tianyu Feng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, PR China; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, Sichuan, PR China
| | - Chengxia Xie
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, PR China; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, Sichuan, PR China
| | - He He
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, PR China; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, Sichuan, PR China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan, PR China; Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, Sichuan, PR China.
| |
Collapse
|
3
|
Soleimani A, Ezabadi SG, Möhn N, Esfandabadi ZM, Khosravizadeh Z, Skripuletz T, Azimzadeh M. Influence of hormones in multiple sclerosis: focus on the most important hormones. Metab Brain Dis 2023; 38:739-747. [PMID: 36595158 DOI: 10.1007/s11011-022-01138-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/30/2022] [Indexed: 01/04/2023]
Abstract
Hormonal imbalance may be an important factor in the severity of multiple sclerosis (MS) disease. In this context, hormone therapy has been shown to have immunoregulatory potential in various experimental approaches. There is increasing evidence of potentially beneficial effects of thyroid, melatonin, and sex hormones in MS models. These hormones may ameliorate the neurological impairment through immunoregulatory and neuroprotective effects, as well as by reducing oxidative stress. Expanding our knowledge of hormone therapy may be an effective step toward identifying additional molecular/cellular pathways in MS disease. In this review, we discuss the role of several important hormones in MS pathogenesis in terms of their effects on immunoregulatory aspects and neuroprotection.
Collapse
Affiliation(s)
- Alireza Soleimani
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sajjad Ghane Ezabadi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nora Möhn
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | | | - Zahra Khosravizadeh
- Clinical Research Development Unit, Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | | | - Maryam Azimzadeh
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran.
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran.
| |
Collapse
|