1
|
Liu Y, Han Y, Liu Y, Huang C, Feng W, Cui H, Li M. Xanthoceras sorbifolium leaves alleviate hyperuricemic nephropathy by inhibiting the PI3K/AKT signaling pathway to regulate uric acid transport. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117946. [PMID: 38447615 DOI: 10.1016/j.jep.2024.117946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/27/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In China, Xanthoceras sorbifolium Bunge was first documented as "Wen Guan Hua" in the "Jiu Huang Ben Cao" in 1406 A.D. According to the "National Compilation of Chinese Herbal Medicine," X. sorbifolium leaves are sweet and flat in nature and can dispel wind and dampness, suggesting that their extract can be used to treat rheumatoid arthritis. X. sorbifolium Bunge has also been used to treat arteriosclerosis, hyperlipidemia, hypertension, chronic hepatitis, and rheumatism, complications associated with hyperuricemic nephropathy (HN), a condition characterized by kidney damage resulting from high levels of uric acid (UA) in the blood. AIM OF THE STUDY The purpose of this study was to investigate the effects and underlying mechanisms of a 70% ethanol extract from X. sorbifolium leaves (EX) in alleviating HN. MATERIALS AND METHODS A mouse model of hyperuricemia was established to initially evaluate the hypouricemic effects and determine the effective dose of EX. Phytochemical analyses were conducted using ultra high-performance liquid chromatography and liquid chromatography-mass spectroscopy. The potential key pathways of EX in the alleviation of HN were inferred using network pharmacology and bioinformatics. An HN rat model was then established, and experiments including biomarker detection, western blotting, reverse transcription quantitative polymerase chain reaction, immunohistochemical and Masson's trichrome staining, and transmission electron microscopy were conducted to evaluate the effect of EX on UA transporter expression in vitro. RESULTS Network pharmacology and bioinformatics analyses revealed that the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway was the key pathway for the alleviation of HN progression by EX. EX treatment reduced serum biomarkers in HN rats, downregulated the expression of p-PI3K, p-AKT, glucose transporter 9 (GLUT9), urate transporter 1 (URAT1), Collagen I, matrix metalloproteinase (MMP)-2, and MMP-9, and upregulated the expression of ATP binding cassette subfamily G member 2 (ABCG2) to improve renal interstitial fibrosis in HN rats. A high content of both quercitrin and cynaroside were identified in EX; their administration inhibited the increased expression of GLUT9 and URAT1 in damaged HK-2 cells. CONCLUSION Our study provides evidence that EX alleviates HN. The potential mechanism underlying this effect may be the regulation of UA transporters, such as GLUT9 and URAT1, by limiting the activation of the PI3K/AKT signaling pathway to improve renal injury.
Collapse
Affiliation(s)
- Yuchao Liu
- Qiqihar Medical University, Qiqihar, 161006, China
| | - Yunqi Han
- Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China
| | - Yuquan Liu
- Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous Region, Hohhot, 010020, China
| | | | - Wanze Feng
- Baotou Medical College, Baotou, 014040, China
| | - Hongwei Cui
- Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, 010020, China.
| | - Minhui Li
- Baotou Medical College, Baotou, 014040, China; Qiqihar Medical University, Qiqihar, 161006, China; Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous Region, Hohhot, 010020, China; Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou, 014040, China.
| |
Collapse
|
2
|
Luo H, Wang X, Fang M, Yu H, Gui L, Wu Z, Sheng J, Li F. Combined Hydroxyethyl Starch Luteolin Nanocrystals for Effective Anti-Hyperuricemia Effect in Mice Model. Int J Nanomedicine 2024; 19:5139-5156. [PMID: 38859954 PMCID: PMC11162967 DOI: 10.2147/ijn.s464948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
Introduction Although flavonoid compounds exhibit various pharmacological activities, their clinical applications are restricted by low oral bioavailability owing to their poor solubility. Nanocrystals (NCs) represent an excellent strategy for enhancing the oral bioavailability of flavonoids. Hydroxyethyl starch (HES), a biomaterial compound used as a plasma expander, could be an ideal stabilizer material for preparing flavonoid NCs. Methods HES was used to stabilize flavonoid nanocrystals (NCs), using luteolin (LUT) as a model drug. After full characterization, the freeze-drying and storage stability, solubility, intestinal absorption, pharmacokinetics, and in vivo anti-hyperuricemic effect of the optimized HES-stabilized LUT NCs (LUT-HES NCs) were investigated. Results Uniformed LUT-HES NCs were prepared with mean particle size of 191.1±16.8 nm, zeta potential of about -23 mV, drug encapsulation efficiency of 98.52 ± 1.01%, and drug loading of 49.26 ± 0.50%. The freeze-dried LUT-HES NCs powder showed good re-dispersibility and storage stability for 9 months. Notably, compared with the coarse drug, LUT-HES NCs exhibited improved saturation solubility (7.49 times), increased drug dissolution rate, enhanced Caco-2 cellular uptake (2.78 times) and oral bioavailability (Fr=355.7%). Pharmacodynamic studies showed that LUT-HES NCs remarkably lowered serum uric acid levels by 69.93% and ameliorated renal damage in hyperuricemic mice. Conclusion HES is a potential stabilizer for poorly soluble flavonoid NCs and provides a promising strategy for the clinical application of these compounds. LUT-HES NCs may be an alternative or complementary strategy for hyperuricemia treatment.
Collapse
Affiliation(s)
- Han Luo
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Xiaofei Wang
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Mengqi Fang
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Huifan Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Lili Gui
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Zhengkun Wu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| | - Jianyong Sheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Fei Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, Hubei, People’s Republic of China
| |
Collapse
|
3
|
Qian Y, Shen Y. Si Miao San relieves hyperuricemia by regulating intestinal flora. Biomed Chromatogr 2024; 38:e5807. [PMID: 38118432 DOI: 10.1002/bmc.5807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 11/26/2023] [Indexed: 12/22/2023]
Abstract
This study seeks to investigate the therapeutic effects of Si Miao San (SMS) on hyperuricemia and its underlying mechanisms, particularly focusing on the role of intestinal flora. The key components of SMS were identified using high-performance liquid chromatography (HPLC). To establish a rat model of hyperuricemia, an intraperitoneal injection of potassium oxonate was performed, followed by oral administration of various concentrations of SMS. The study evaluated the status of hyperuricemia, renal pathology, xanthine oxidase (XO) activity, and intestinal flora. Utilizing HPLC, we identified five active components of SMS. Following SMS intervention, there was a significant reduction in serum levels of uric acid (UA), blood urea nitrogen, and creatinine, accompanied by an increase in urine UA levels in rats with hyperuricemia. Distinct pathological injuries were evident in the renal tissues of hyperuricemic rats, and these were partially alleviated following SMS intervention. Moreover, SMS exhibited a dose-dependent reduction in XO activity both in the serum and hepatic tissues. Notably, SMS contributed to an enhancement in the diversity of intestinal flora in hyperuricemic rats. The intervention of SMS resulted in a reduction in the abundance of certain bacterial species, including Parabacteroides johnsonii, Corynebacterium urealyticum, and Burkholderiales bacterium. This suggests that SMS may exert anti-hyperuricemia effects, potentially by modulating the composition of intestinal flora.
Collapse
Affiliation(s)
- Yue Qian
- Rehabilitation Center, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou, Zhejiang Province, China
| | - Yan Shen
- Department of Nursing, Hangzhou Wuyunshan Hospital (Hangzhou Institute of Health Promotion), Hangzhou, Zhejiang Province, China
| |
Collapse
|
4
|
Balázs O, Dombi Á, Zsidó BZ, Hetényi C, Valentová K, Vida RG, Poór M. Inhibition of xanthine oxidase-catalyzed xanthine and 6-mercaptopurine oxidation by luteolin, naringenin, myricetin, ampelopsin and their conjugated metabolites. Biomed Pharmacother 2023; 167:115548. [PMID: 37734263 DOI: 10.1016/j.biopha.2023.115548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
Luteolin, naringenin, myricetin, and ampelopsin are abundant flavonoids in nature, and several dietary supplements also contain them at very high doses. After the peroral intake, flavonoids go through extensive presystemic biotransformation; therefore, typically their sulfate/glucuronic acid conjugates reach high concentrations in the circulation. Xanthine oxidase (XO) enzyme is involved in uric acid production, and it also takes part in the elimination of certain drugs (e.g., 6-mercaptopurine). The inhibitory effects of flavonoid aglycones on XO have been widely studied; however, only limited data are available regarding their sulfate and glucuronic acid conjugates. In this study, we examined the impacts of luteolin, naringenin, myricetin, ampelopsin, and their sulfate/glucuronide derivatives on XO-catalyzed xanthine and 6-mercaptopurine oxidations employing in vitro enzyme incubation assays and molecular modeling studies. Our major results/conclusions are the following: (1) Sulfate metabolites were stronger while glucuronic acid derivatives were weaker inhibitors of XO compared to the parent flavonoids. (2) Naringenin, ampelopsin, and their metabolites were weak inhibitors of the enzyme. (3) Luteolin, myricetin, and their sulfates were highly potent inhibitors of XO, and the glucuronides of luteolin showed moderate inhibitory impacts. (4) Conjugated metabolites of luteolin and myricetin can be involved in the inhibitory effects of these flavonoids on XO enzyme.
Collapse
Affiliation(s)
- Orsolya Balázs
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary; Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary
| | - Ágnes Dombi
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Balázs Z Zsidó
- Unit of Pharmacoinformatics, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Csaba Hetényi
- Unit of Pharmacoinformatics, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00 Prague, Czech Republic
| | - Róbert G Vida
- Department of Pharmaceutics and Central Clinical Pharmacy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary.
| |
Collapse
|
5
|
Wang Y, Zhou L, Chen M, Liu Y, Yang Y, Lu T, Ban F, Hu X, Qian Z, Hong P, Zhang Y. Mining Xanthine Oxidase Inhibitors from an Edible Seaweed Pterocladiella capillacea by Using In Vitro Bioassays, Affinity Ultrafiltration LC-MS/MS, Metabolomics Tools, and In Silico Prediction. Mar Drugs 2023; 21:502. [PMID: 37888437 PMCID: PMC10608504 DOI: 10.3390/md21100502] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
The prevalence of gout and the adverse effects of current synthetic anti-gout drugs call for new natural and effective xanthine oxidase (XOD) inhibitors to target this disease. Based on our previous finding that an edible seaweed Pterocladiella capillacea extract inhibits XOD, XOD-inhibitory and anti-inflammatory activities were used to evaluate the anti-gout potential of different P. capillacea extract fractions. Through affinity ultrafiltration coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS), feature-based molecular networking (FBMN), and database mining of multiple natural products, the extract's bioactive components were traced and annotated. Through molecular docking and ADMET analysis, the possibility and drug-likeness of the annotated XOD inhibitors were predicted. The results showed that fractions F4, F6, F4-2, and F4-3 exhibited strong XOD inhibition activity, among which F4-3 reached an inhibition ratio of 77.96% ± 4.91% to XOD at a concentration of 0.14 mg/mL. In addition, the P. capillacea extract and fractions also displayed anti-inflammatory activity. Affinity ultrafiltration LC-MS/MS analysis and molecular networking showed that out of the 20 annotated compounds, 8 compounds have been previously directly or indirectly reported from seaweeds, and 4 compounds have been reported to exhibit anti-gout activity. Molecular docking and ADMET showed that six seaweed-derived compounds can dock with the XOD activity pocket and follow the Lipinski drug-like rule. These results support the value of further investigating P. capillacea as part of the development of anti-gout drugs or related functional foods.
Collapse
Affiliation(s)
- Yawen Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.W.); (L.Z.); (M.C.); (Y.L.); (Y.Y.); (T.L.); (F.B.); (X.H.); (Z.Q.); (P.H.)
| | - Longjian Zhou
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.W.); (L.Z.); (M.C.); (Y.L.); (Y.Y.); (T.L.); (F.B.); (X.H.); (Z.Q.); (P.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Minqi Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.W.); (L.Z.); (M.C.); (Y.L.); (Y.Y.); (T.L.); (F.B.); (X.H.); (Z.Q.); (P.H.)
| | - Yayue Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.W.); (L.Z.); (M.C.); (Y.L.); (Y.Y.); (T.L.); (F.B.); (X.H.); (Z.Q.); (P.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yu Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.W.); (L.Z.); (M.C.); (Y.L.); (Y.Y.); (T.L.); (F.B.); (X.H.); (Z.Q.); (P.H.)
| | - Tiantian Lu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.W.); (L.Z.); (M.C.); (Y.L.); (Y.Y.); (T.L.); (F.B.); (X.H.); (Z.Q.); (P.H.)
| | - Fangfang Ban
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.W.); (L.Z.); (M.C.); (Y.L.); (Y.Y.); (T.L.); (F.B.); (X.H.); (Z.Q.); (P.H.)
| | - Xueqiong Hu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.W.); (L.Z.); (M.C.); (Y.L.); (Y.Y.); (T.L.); (F.B.); (X.H.); (Z.Q.); (P.H.)
| | - Zhongji Qian
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.W.); (L.Z.); (M.C.); (Y.L.); (Y.Y.); (T.L.); (F.B.); (X.H.); (Z.Q.); (P.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Pengzhi Hong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.W.); (L.Z.); (M.C.); (Y.L.); (Y.Y.); (T.L.); (F.B.); (X.H.); (Z.Q.); (P.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.W.); (L.Z.); (M.C.); (Y.L.); (Y.Y.); (T.L.); (F.B.); (X.H.); (Z.Q.); (P.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
6
|
Rutin ameliorates gout via reducing XOD activity, inhibiting ROS production and NLRP3 inflammasome activation in quail. Biomed Pharmacother 2023; 158:114175. [PMID: 36587556 DOI: 10.1016/j.biopha.2022.114175] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Gout is a metabolic disease affected by monosodium urate (MSU) deposition, which is directly related to hyperuricemia. Recent reports on the prevalence and incidence of gout have been widely circulated worldwide. Currently, the anti-gout drugs in clinical practice are mainly small-molecule synthetic drugs, and the effectiveness and safety are limited. Reducing uric acid and inhibiting inflammation are the focused areas of drug research and development on gout. Rutin, a natural flavonoid, has been reported to alleviate inflammation in various diseases. However, whether rutin exerts protective effects on gout remains to be elucidated. This study used quails without urate oxidase as experimental animals to induce endogenous gout models through a high purine diet. We confirmed that quail in the model group developed gout symptoms at 30 days of the experiment. And the targets of uric acid metabolism, oxidative stress level, and NLRP3 inflammasome were dysregulated in quails. Rutin treatment improves gout and reduces inflammatory expression in quail. We further confirmed that rutin treatment reduced XOD activity and uric acid levels in quail. And rutin inhibited ROS production, restored oxidative stress balance, inhibited NLRP3 inflammasome activation, and exerted anti-inflammatory effects. We extracted and identified the fibroblast-like synoviocytes (FLS) for the first time. The results showed that rutin could reduce ROS production and NLRP3 inflammasome activation of FLS after uric acid stimulation. In conclusion, our findings underscore that rutin may be a gout protective agent by reducing XOD activity, inhibiting ROS production and NLRP3 inflammasome activation. Meanwhile, this study also provides an available animal model for the research drugs of gout.
Collapse
|
7
|
Li Y, Li Z, Ye T, Hao F, Wang Y, Li W, Yan Q, Shi H, Han W. Mechanism of Erzhiwan in treating osteoporosis based on molecular docking technology and molecular dynamics simulation. J Mol Model 2022; 29:21. [PMID: 36565386 DOI: 10.1007/s00894-022-05418-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/13/2022] [Indexed: 12/26/2022]
Abstract
This experiment was a network pharmacology research based on the theoretical system of traditional Chinese medicine. TCMSP database, PubChem database, RCSB database, and SwissTargetPrediction database were used to study the effective chemical constituents of Ligustri lucidi Fructus and Ecliptae Herba in Erzhiwan, a traditional prescription for nourishing the liver and kidney. Then Genecards database, OMIM database, OMIM Gene Map, and Metascape database were used to study the therapeutic targets of osteoporosis. At last, Cytoscape 3.6.0 software, its built-in Bisogenet and CytoNCA, AutoDockTools-1.5.6 software, PYMOL-2.2.0 software, and Gromacs software, by drawing the relationship diagram between chemical components and disease targets, PPI network of disease, semi-flexible molecular docking technology, evaluation and analysis of enrichment pathway, and molecular dynamics simulation, were used to study the therapeutic mechanism of Erzhiwan on osteoporosis. It is found that the intervention and regulation of Erzhiwan on osteoporosis were mainly realized through multiple targets of active ingredients and multiple pathways, which provided support for the continued development of Erzhiwan.
Collapse
Affiliation(s)
- Yanling Li
- School of pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Ziliang Li
- School of pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China.,School of pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tongsheng Ye
- Department of Pharmacy, Henan Integrative Medicine Hospital, Zhengzhou, 450004, China
| | - Fuqi Hao
- School of pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Yichi Wang
- School of pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Wenqian Li
- School of pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Qingfeng Yan
- School of pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Huawei Shi
- School of pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Weijuan Han
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, 450003, China.
| |
Collapse
|
8
|
Liu Y, Luo D, Xu B. The combination of molecular docking and network pharmacology reveals the molecular mechanism of Danggui Niantong decoction in treating gout. Medicine (Baltimore) 2022; 101:e31535. [PMID: 36451451 PMCID: PMC9704887 DOI: 10.1097/md.0000000000031535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Due to unhealthy diet and living habits, the incidence of gout is on the rise and has become a common disease with a high incidence. Danggui Niantong decoction (DGNTD), as a classic formula composed of 15 common herbs, has been widely used in clinical practice since ancient times to prevent and treat gout. However, the pharmacological mechanism and target of DGNTD are not clear. METHODS The potential active compounds and targets of DGNTD were obtained by traditional Chinese medicine systems pharmacology (TCMSP) database, and the differential genes of gout patients and controls were analyzed in gene expression omnibus (GEO) database. GSEA analysis of differential genes with GSEA 4.1.0 software and then the differential genes were intersected with the gout-related disease targets searched by GeneCard, CTD and OMIM disease database to obtain the final disease target. The "Traditional Chinese medicine-Active compounds-Targets" network was constructed by Cytoscape3.7.2 software. The R packet is used for enrichment analysis. The molecular docking between the active compound of DGNTD and the core target was verified by AutoDockTools software. RESULTS Two hundred eighty six and 244 targets of DGNTD-related active components and 652 targets of gout were obtained, of which 13 targets were potential targets of DGNTD in the treatment of gout. GSEA analysis showed that the differential genes were mainly involved in apoptosis, inflammatory reaction, and receptor metabolism and so on. Gene ontology (GO) functional enrichment analysis shows that DGNTD regulates many biological processes, such as the response to purine-containing compound and response to lipopolysaccharide, positive regulation of acute inflammatory response and other cellular components. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis shows that DGNTD treatment of gout is mainly related to interleukin-17 (IL-17), Toll-like receptor, rheumatoid arthritis, tumor necrosis factor (TNF) and so on. The results of molecular docking showed that the five active compounds in DGNTD had strong binding activity to core protein receptors. CONCLUSIONS The active compounds of DGNTD may achieve the purpose of treating gout by acting on the core target (CASP8, CXCL8, FOS, IL1B, IL6, JUN, PTGS2, STAT1, MMP1, TNF) to regulate cell metabolism, proliferation and apoptosis, and improve inflammatory response, which is the result of multi-component, multi-target and multi-pathway interaction. It provides an idea for the development of new combined drugs for gout.
Collapse
Affiliation(s)
- Yuan Liu
- The First Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Di Luo
- Microscopic Orthopaedic, Shandong University of Chinese Traditional Medicine, Jinan, China
| | - Bo Xu
- The First Clinical Medical College, Shandong University of Chinese Traditional Medicine, Jinan, China
- * Correspondence: Bo Xu, The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Lixia District, Jinan, Shandong 250000, China (e-mail: )
| |
Collapse
|
9
|
Liu T, Gao H, Zhang Y, Wang S, Lu M, Dai X, Liu Y, Shi H, Xu T, Yin J, Gao S, Wang L, Zhang D. Apigenin Ameliorates Hyperuricemia and Renal Injury through Regulation of Uric Acid Metabolism and JAK2/STAT3 Signaling Pathway. Pharmaceuticals (Basel) 2022; 15:1442. [PMID: 36422572 PMCID: PMC9697024 DOI: 10.3390/ph15111442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 08/09/2023] Open
Abstract
Hyperuricemia (HUA) is a kind of metabolic disease with high incidence that still needs new countermeasures. Apigenin has uric-lowering and kidney-protective activities, but how apigenin attenuates HUA and renal injury remains largely unexploited. To this end, an acute HUA mouse model was established by intraperitoneal injection of potassium oxazinate and oral administration with hypoxanthine for 7 consecutive days. Apigenin intervention decreased serum uric acid (UA), creatinine (CRE), blood urea nitrogen (BUN), interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor (TNF-α), interleukin-18 (IL-18), liver xanthine oxidase (XOD), and urine protein levels, and increased serum interleukin-10 (IL-10) and urine UA and CRE levels in HUA mice. Moreover, administration of apigenin to HUA mice prevented renal injury, decreased renal glucose transporter 9 (GLUT9) and urate anion transporter 1 (URAT1) levels, and increased renal organic anion transporter 1 (OAT1). These alterations were associated with an inhibition of IL-6, phospho-janus kinase 2 (P-JAK2), phospho-signal transducer, and activator of transcription 3 (P-STAT3), and suppression of cytokine signaling 3 (SOCS3) expression in the kidneys. Additionally, the molecular docking results showed that apigenin had strong binding capacity with UA transporters and JAK2 proteins. In summary, apigenin could improve UA metabolism and attenuate renal injury through inhibiting UA production, promoting excretion, and suppressing the JAK2/STAT3 signaling pathway in HUA mice. The results suggest that apigenin may be a suitable drug candidate for management of HUA and its associated renal injury.
Collapse
Affiliation(s)
- Tianyuan Liu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huimin Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
| | - Yueyi Zhang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shan Wang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Meixi Lu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xuan Dai
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yage Liu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hanfen Shi
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tianshu Xu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiyuan Yin
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Sihua Gao
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dongwei Zhang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
10
|
Scanu A, Luisetto R, Ramonda R, Spinella P, Sfriso P, Galozzi P, Oliviero F. Anti-Inflammatory and Hypouricemic Effect of Bioactive Compounds: Molecular Evidence and Potential Application in the Management of Gout. Curr Issues Mol Biol 2022; 44:5173-5190. [PMID: 36354664 PMCID: PMC9688861 DOI: 10.3390/cimb44110352] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/21/2023] Open
Abstract
Gout is caused by the deposition of monosodium urate crystals in the joint and represents the most common form of inflammatory arthritis in men. Its prevalence is rising worldwide mainly due to the increase of risk factors associated with the disease, in particular hyperuricemia. Besides gout, hyperuricemia leads to an increased inflammatory state of the body with consequent increased risk of comorbidities such as cardiovascular diseases. Increasing evidence shows that bioactive compounds have a significant role in fighting inflammatory and immune chronic conditions. In gout and hyperuricemia, these molecules can exert their effects at two levels. They can either decrease serum uric acid concentrations or fight inflammation associated with monosodium urate crystals deposits and hyperuricemia. In this view, they might be considered valuable support to the pharmacological therapy and prevention of the disease. This review aims to provide an overview of the beneficial role of bioactive compounds in hyperuricemia, gout development, and inflammatory pathways of the disease.
Collapse
Affiliation(s)
- Anna Scanu
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Roberto Luisetto
- Department of Surgery, Oncology and Gastroenterology—DISCOG, University of Padova, 35128 Padova, Italy
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Paolo Spinella
- Clinical Nutrition Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Paolo Sfriso
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Paola Galozzi
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| | - Francesca Oliviero
- Rheumatology Unit, Department of Medicine—DIMED, University of Padova, 35128 Padova, Italy
| |
Collapse
|
11
|
Nutmakul T. A review on benefits of quercetin in hyperuricemia and gouty arthritis. Saudi Pharm J 2022; 30:918-926. [PMID: 35903522 PMCID: PMC9315272 DOI: 10.1016/j.jsps.2022.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
Hyperuricemia becomes a public health problem worldwide. It is not only a major risk factor for gout but also associated with the development of life-threatening diseases such as chronic kidney disease and cardiovascular diseases. Although there are several available therapeutic drugs, some serious adverse effects and contraindications are concerned. These drive the search for an alternative therapy that is effective and safe. Quercetin is of particular interesting since it has been reported numerous pharmacological activities, especially anti-hyperuricemia, antioxidant, anti-inflammation and amelioration of metabolic syndromes and cardiovascular diseases which are comorbidities of hyperuricemia and gout. In addition, quercetin has been widely used as a health supplement for many diseases however, the use for hyperuricemia and gout has not been indicated. Therefore, this review aims to gather and summarize published data regarding the efficacy in preclinical and clinical studies along with possible mechanism of action, and safety aspect of quercetin in order to support the use of quercetin as a dietary supplement for prevention and management of hyperuricemia and gouty arthritis and/or use as alternative or combination therapy to minimize the side effects of the conventional drugs.
Collapse
|
12
|
Zou F, Li X, Yang R, Zhang R, Zhao X. Effects and underlying mechanisms of food polyphenols in treating gouty arthritis: A review on nutritional intake and joint health. J Food Biochem 2022; 46:e14072. [PMID: 34997623 DOI: 10.1111/jfbc.14072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/06/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Gouty arthritis, one of the most severe and common forms of arthritis, is characterized by monosodium urate crystal deposition in joints and surrounding tissues. Epidemiological evidence indicates that gouty arthritis incidence is sharply rising globally. Polyphenols are found in many foods and are secondary metabolites in plant foods. The anti-inflammatory and antioxidant effects of food polyphenols have been extensively studied in many inflammatory chronic diseases. Research has suggested that many food polyphenols have excellent anti-gouty arthritis effects. The mechanisms mainly include (a) inhibiting xanthine oxidase activity; (b) reducing the levels of inflammatory cytokines and chemokines; (c) inhibiting the activation of signaling pathways and the NLRP3 inflammasome; and (d) reducing oxidative stress. This paper reviews the research progress and pathogenesis of gouty arthritis and introduces the mechanisms of food polyphenols in treating gouty arthritis, which aims to explore the potential of functional foods in the treatment of gouty arthritis. PRACTICAL APPLICATIONS: The incidence rate of gouty arthritis has increased sharply worldwide, which has seriously affected people's quality of life. According to the current research progress, food polyphenols alleviate gouty arthritis through anti-inflammatory and antioxidant effects. This paper reviews the research progress and molecular pathogenesis of gouty arthritis and introduces the mechanisms of food-derived polyphenols in the treatment of gouty arthritis, which is helpful to the prevention and treatment of gouty arthritis.
Collapse
Affiliation(s)
- Fengmao Zou
- School of Traditional Chinese Material Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaofang Li
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Rong Yang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Ruowen Zhang
- Department of Research and Development, Jiahehongsheng (Shenzhen) Health Industry Group, Shenzhen, China
| | - Xu Zhao
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
13
|
Muller CJF, Joubert E, Chellan N, Miura Y, Yagasaki K. New Insights into the Efficacy of Aspalathin and Other Related Phytochemicals in Type 2 Diabetes-A Review. Int J Mol Sci 2021; 23:ijms23010356. [PMID: 35008779 PMCID: PMC8745648 DOI: 10.3390/ijms23010356] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
In the pursuit of bioactive phytochemicals as a therapeutic strategy to manage metabolic risk factors for type 2 diabetes (T2D), aspalathin, C-glucosyl dihydrochalcone from rooibos (Aspalathus linearis), has received much attention, along with its C-glucosyl flavone derivatives and phlorizin, the apple O-glucosyl dihydrochalcone well-known for its antidiabetic properties. We provided context for dietary exposure by highlighting dietary sources, compound stability during processing, bioavailability and microbial biotransformation. The review covered the role of these compounds in attenuating insulin resistance and enhancing glucose metabolism, alleviating gut dysbiosis and associated oxidative stress and inflammation, and hyperuricemia associated with T2D, focusing largely on the literature of the past 5 years. A key focus of this review was on emerging targets in the management of T2D, as highlighted in the recent literature, including enhancing of the insulin receptor and insulin receptor substrate 1 signaling via protein tyrosine phosphatase inhibition, increasing glycolysis with suppression of gluconeogenesis by sirtuin modulation, and reducing renal glucose reabsorption via sodium-glucose co-transporter 2. We conclude that biotransformation in the gut is most likely responsible for enhancing therapeutic effects observed for the C-glycosyl parent compounds, including aspalathin, and that these compounds and their derivatives have the potential to regulate multiple factors associated with the development and progression of T2D.
Collapse
Affiliation(s)
- Christo J. F. Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (MRC), Tygerberg 7505, South Africa; (C.J.F.M.); (N.C.)
- Centre for Cardiometabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest & Agro-Processing Technologies, Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa;
- Department of Food Science, Stellenbosch University, Matieland 7602, South Africa
| | - Nireshni Chellan
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (MRC), Tygerberg 7505, South Africa; (C.J.F.M.); (N.C.)
- Centre for Cardiometabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Yutaka Miura
- Division of Applied Biological Chemistry, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
| | - Kazumi Yagasaki
- Division of Applied Biological Chemistry, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan;
- Correspondence:
| |
Collapse
|