1
|
He H, Zheng S, Jin S, Huang W, Wei E, Guan S, Yang C. Nucleotide metabolism-associated drug resistance gene NDUFA4L2 promotes colon cancer progression and 5-FU resistance. Sci Rep 2025; 15:570. [PMID: 39747340 PMCID: PMC11695588 DOI: 10.1038/s41598-024-84353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Chemotherapy is an effective way to improve the prognosis of colorectal cancer patients, but patient resistance to chemotherapeutic agents is becoming a major obstacle to treatment. Nucleotide metabolism correlates with the progression of colorectal cancer and chemotherapy resistance, but the mechanisms involved need to be further investigated. We calculated the half-maximal inhibitory concentrations (IC50) of 5-Fluorouracil (5-FU) in colorectal cancer patients using the "oncopredict" package, screened nucleotide metabolism-related drug resistance genes, and constructed a risk score model. According to the Kaplan-Meier(KM) analysis, the overall survival (OS) and disease-free survival (PFS) of the high-risk group were significantly lower than those of the low-risk group. In addition, the nomogram we constructed had good performance in predicting OS in colon adenocarcinoma (COAD) patients. We validated NDUFA4L2 by cellular functionality experiments, animal tumorigenesis experiments and drug resistance experiments. It was demonstrated that NDUFA4L2 promoted the proliferation and migration of colon cancer cells, while the abnormal regulation of NDUFA4L2 affected the 5-FU resistance of colon cancer cells. In conclusion, we found that NDUFA4L2 promotes the progression and metastasis of colon cancer, as well as resistance to 5-FU chemotherapy.
Collapse
Affiliation(s)
- Hongxin He
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, 350004, Fujian, Fujian, P.R. China
| | - Shiyao Zheng
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, 350004, Fujian, Fujian, P.R. China
| | - Shangkun Jin
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, 350004, Fujian, Fujian, P.R. China
| | - Weijie Huang
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Enhao Wei
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, 350004, Fujian, Fujian, P.R. China
| | - Shen Guan
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, 350004, Fujian, Fujian, P.R. China
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, 420# Fuma Road, 350011, Fuzhou, Fujian, China
| | - Chunkang Yang
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, 350004, Fujian, Fujian, P.R. China.
- Fujian Key Laboratory of Translational Cancer Medicine, 350014, Fuzhou, P.R. China.
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, 420# Fuma Road, 350011, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Zhou R, Sun Z, Zhou R, Wang M, Zhuo Q, Deng X, Wang Z, Xu Y. Pancancer analysis of NDUFA4L2 with focused role in tumor progression and metastasis of colon adenocarcinoma. Med Oncol 2024; 41:285. [PMID: 39402288 DOI: 10.1007/s12032-024-02531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/01/2024] [Indexed: 11/14/2024]
Abstract
Colon adenocarcinoma (COAD) is a prevalent gastrointestinal malignant disease with a high mortality rate, and identification of novel prognostic biomarkers and therapeutic targets is urgently needed. Although NDUFA4L2 has high expressions in various tumors and affects tumor progression, its role in COAD remains unclear. The role of NDUFA4L2 in COAD was analyzed utilizing datasets available from public databases including The Cancer Genome Atlas, The Genotype-Tissue Expression (GTEx), Gene Expression Omnibus, Alabama Cancer Database (UALCAN), and The Human Protein Atlas databases. The prognostic value of NDUFA4L2 was determined using Kaplan-Meier analysis and Cox regression analysis. To investigate the possible mechanism underlying the role of NDUFA4L2 in COAD, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) were employed. The correlation between NDUFA4L2 expression and immune cell infiltration levels was examined through single-sample gene set enrichment analysis (ssGSEA). The NDUFA4L2 expression levels in COAD patients and cell lines were validated through immunohistochemistry, immunofluorescence, qRT-PCR, and Western blot. Wound healing assay was also performed to evaluate the effect of NDUFA4L2 on COAD metastasis. Furthermore, the NDUFA4L2 mediated competing endogenous RNA (ceRNA) regulatory network was predicted and constructed through a variety of databases. The comprehensive pan-cancer analysis showed that NDUFA4L2 possesses diagnostic and prognostic value in many cancers, especially in COAD. GO-KEGG and GSEA analyses indicated that NDUFA4L2 was associated with multiple biological functions including epithelial-mesenchymal transition and adaptation to hypoxia. The ssGSEA analysis showed that NDUFA4L2 expression was associated with immune infiltration. In vitro experiments confirmed upregulation of NDUFA4L2 in COAD tissues and cell lines, and NDUFA4L2 overexpression significantly promoted migration of COAD cells. In addition, the C9orf139 /miR-194-3p axis was speculated as the possible upstream regulators of NDUFA4L2 in COAD. This study demonstrated that NDUFA4L2 upregulation was correlated with tumor progression, relapsed prognosis and aggressive migration of COAD, suggesting that NDUFA4L2 can act as an effective prognostic biomarker and a promising therapeutic target for COAD treatment.
Collapse
Affiliation(s)
- Runlong Zhou
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Zhe Sun
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ruijie Zhou
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Mengyi Wang
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Qing Zhuo
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Xiaotong Deng
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Zhenrong Wang
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Yao Xu
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China.
| |
Collapse
|
3
|
Guo W, Qu Y, Yu Y, Li X, Liang Z, Wang Z, Hu T, Zhou S. DKK2 promotes the progression of oral squamous cell carcinoma through the PI3K/AKT signaling pathway. Aging (Albany NY) 2024; 16:9204-9215. [PMID: 38795388 PMCID: PMC11164507 DOI: 10.18632/aging.205864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/29/2024] [Indexed: 05/27/2024]
Abstract
OBJECTIVE This study aimed to investigate the impact of Dickkopf 2 (DKK2) on the progression of oral squamous cell carcinoma (OSCC) and explore its role in the PI3K/AKT signaling transduction pathway. MATERIALS AND METHODS The study initially examined the expression of the DKK2 gene in OSCC tissues and normal tissues. Simultaneously, the expression of DKK2 in HOK cells and OSCC cells was verified, and changes in DKK2 expression under hypoxic conditions were detected. DKK2 overexpression and knockdown were performed in SCC-15 and CAL-27 cells. Subsequently, the effects of DKK2 on the proliferation, migration and invasion of OSCC were detected. Western blotting was employed to detect the expression of key proteins in the DKK2/PI3K/AKT signaling axis before and after transfection, and further explore the relevant molecular mechanisms. RESULTS Compared to normal tissues, DKK2 expression was elevated in OSCC tissues. The expression of DKK2 in the SCC-15 and CAL-27 cell lines was higher than that in HOK cells, and hypoxic conditions could promote DKK2 expression. DKK2 overexpression promoted cell proliferation, migration, and invasion, while DKK2 knockdown inhibited these processes. DKK2 overexpression activated the PI3K/AKT pathway, while DKK2 knockdown suppressed this pathway. CONCLUSION This study suggests that hypoxic conditions enhance the expression of DKK2 in OSCC. DKK2 regulates the proliferation, migration, and invasion of OSCC through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Wenbo Guo
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Yun Qu
- Department of Orthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Yang Yu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin 150001, Heilongjiang, China
| | - Xueming Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin 150001, Heilongjiang, China
| | - Zhuang Liang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin 150001, Heilongjiang, China
| | - Zhaoqi Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin 150001, Heilongjiang, China
| | - Tenglong Hu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin 150001, Heilongjiang, China
| | - Shan Zhou
- Department of Orthodontics, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| |
Collapse
|
4
|
Zheng Q, Lu C, Yu L, Zhan Y, Chen Z. Exploring the metastasis-related biomarker and carcinogenic mechanism in liver cancer based on single cell technology. Heliyon 2024; 10:e27473. [PMID: 38509894 PMCID: PMC10950590 DOI: 10.1016/j.heliyon.2024.e27473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/16/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a fatal primary malignancy characterized by high invasion and migration. We aimed to explore the underlying metastasis-related mechanism supporting the development of HCC. Methods The dataset of single cell RNA-seq (GSE149614) were collected for cell clustering by using the Seurat R package, the FindAllMarkers function was used to find the highly expression and defined the cell cluster. The WebGestaltR package was used for the GO and KEGG function analysis of shared genes, the Gene Set Enrichment Analysis (GSVA) was performed by clusterProfiler R package, the hTFtarget database was used to identify the crucial transcription factors (TFs), the Genomics of Drug Sensitivity in Cancer (GDSC) database was used for the drug sensitivity analysis. Finally, the overexpression and trans-well assay was used for gene function analysis. Results We obtained 9 cell clusters from the scRNA-seq data, including the nature killer (NK)/T cells, Myeloid cells, Hepatocytes, Epithelial cells, Endothelial cells, Plasma B cells, Smooth muscle cells, B cells, Liver bud hepatic cells. Further cell ecological analysis indicated that the Hepatocytes and Endothelial cell cluster were closely related to the cancer metastasis. Subsequently, the NDUFA4L2-Hepatocyte, GTSE1-Hepatocyte, ENTPD1-Endothelial and NDUFA4L2-Endothelial were defined as metastasis-supporting cell clusters, in which the NDUFA4L2-Hepatocyte cells was closely related to angiogenesis, while the NDUFA4L2-Endothelial was related with the inflammatory response and complement response. The overexpression and trans-well assay displayed that NDUFA4L2 exhibited clearly metastasis-promoting role in HCC progression. Conclusion We identified and defined 4 metastasis-supporting cell clusters by using the single cell technology, the specify shared gene was observed and played crucial role in promoting cancer progression, our findings were expected to provide new insight in control cancer metastasis.
Collapse
Affiliation(s)
- Qiuxiang Zheng
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Cuiping Lu
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Lian Yu
- Department of Hematology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Ying Zhan
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| | - Zhiyong Chen
- Department of Oncology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, China
| |
Collapse
|