1
|
Tourkochristou E, Assimakopoulos SF, Thomopoulos K, Marangos M, Triantos C. NAFLD and HBV interplay - related mechanisms underlying liver disease progression. Front Immunol 2022; 13:965548. [PMID: 36544761 PMCID: PMC9760931 DOI: 10.3389/fimmu.2022.965548] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/15/2022] [Indexed: 12/08/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and Hepatitis B virus infection (HBV) constitute common chronic liver diseases with worldwide distribution. NAFLD burden is expected to grow in the coming decade, especially in western countries, considering the increased incidence of diabetes and obesity. Despite the organized HBV vaccinations and use of anti-viral therapies globally, HBV infection remains endemic and challenging public health issue. As both NAFLD and HBV have been associated with the development of progressive fibrosis, cirrhosis and hepatocellular carcinoma (HCC), the co-occurrence of both diseases has gained great research and clinical interest. The causative relationship between NAFLD and HBV infection has not been elucidated so far. Dysregulated fatty acid metabolism and lipotoxicity in NAFLD disease seems to initiate activation of signaling pathways that enhance pro-inflammatory responses and disrupt hepatocyte cell homeostasis, promoting progression of NAFLD disease to NASH, fibrosis and HCC and can affect HBV replication and immune encountering of HBV virus, which may further have impact on liver disease progression. Chronic HBV infection is suggested to have an influence on metabolic changes, which could lead to NAFLD development and the HBV-induced inflammatory responses and molecular pathways may constitute an aggravating factor in hepatic steatosis development. The observed altered immune homeostasis in both HBV infection and NAFLD could be associated with progression to HCC development. Elucidation of the possible mechanisms beyond HBV chronic infection and NAFLD diseases, which could lead to advanced liver disease or increase the risk for severe complications, in the case of HBV-NAFLD co-existence is of high clinical significance in the context of designing effective therapeutic targets.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Stelios F. Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece,*Correspondence: Stelios F. Assimakopoulos,
| | - Konstantinos Thomopoulos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Markos Marangos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
2
|
Menarim BC, MacLeod JN, Dahlgren LA. Bone marrow mononuclear cells for joint therapy: The role of macrophages in inflammation resolution and tissue repair. World J Stem Cells 2021; 13:825-840. [PMID: 34367479 PMCID: PMC8316866 DOI: 10.4252/wjsc.v13.i7.825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/03/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease causing major disability and medical expenditures. Synovitis is a central feature of OA and is primarily driven by macrophages. Synovial macrophages not only drive inflammation but also its resolution, through a coordinated, simultaneous expression of pro- and anti-inflammatory mechanisms that are essential to counteract damage and recover homeostasis. Current OA therapies are largely based on anti-inflammatory principles and therefore block pro-inflammatory mechanisms such as prostaglandin E2 and Nuclear factor-kappa B signaling pathways. However, such mechanisms are also innately required for mounting a pro-resolving response, and their blockage often results in chronic low-grade inflammation. Following minor injury, macrophages shield the damaged area and drive tissue repair. If the damage is more extensive, macrophages incite inflammation recruiting more macrophages from the bone marrow to maximize tissue repair and ultimately resolve inflammation. However, sustained damage and inflammation often overwhelms pro-resolving mechanisms of synovial macrophages leading to the chronic inflammation and related tissue degeneration observed in OA. Recently, experimental and clinical studies have shown that joint injection with autologous bone marrow mononuclear cells replenishes inflamed joints with macrophage and hematopoietic progenitors, enhancing mechanisms of inflammation resolution, providing remarkable and long-lasting effects. Besides creating an ideal environment for resolution with high concentrations of interleukin-10 and anabolic growth factors, macrophage progenitors also have a direct role in tissue repair. Macrophages constitute a large part of the early granulation tissue, and further transdifferentiate from myeloid into a mesenchymal phenotype. These cells, characterized as fibrocytes, are essential for repairing osteochondral defects. Ongoing “omics” studies focused on identifying key drivers of macrophage-mediated resolution of joint inflammation and those required for efficient osteochondral repair, have the potential to uncover ways for developing engineered macrophages or off-the-shelf pro-resolving therapies that can benefit patients suffering from many types of arthropaties, not only OA.
Collapse
Affiliation(s)
- Bruno C Menarim
- Gluck Equine Research Center, Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, United States
| | - James N MacLeod
- Gluck Equine Research Center, Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, United States
| | - Linda A Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, United States
| |
Collapse
|
3
|
Zhang Y, Zhou X, Liu P, Chen X, Zhang J, Zhang H, Li S, Chen Y, Song X, Wang J, Zeng H, Zhang X, Tang C, Yu C, Li Y, Xu C. GCSF deficiency attenuates nonalcoholic fatty liver disease through regulating GCSFR-SOCS3-JAK-STAT3 pathway and immune cells infiltration. Am J Physiol Gastrointest Liver Physiol 2021; 320:G531-G542. [PMID: 33470903 DOI: 10.1152/ajpgi.00342.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/11/2021] [Indexed: 01/31/2023]
Abstract
Granulocyte colony stimulating factor (GCSF) is a cytokine with immunomodulation effects. However, little is known about its role in metabolic diseases. In the current study, we aimed to explore the role of GCSF in nonalcoholic fatty liver disease (NAFLD). Male GCSF-/- mice were used to investigate the function of GCSF in vivo after high-fat diet (HFD). Primary hepatocytes were used for evaluating the function of GCSF in vitro. Liver immune cells were isolated and analyzed by flow cytometry. Our results showed that GCSF administration significantly increased serum triglyceride (TG) levels in patients. Circulating GCSF was markedly elevated in HFD-fed mice. GCSF-/- mice exhibited alleviated HFD-induced obesity, insulin resistance, and hepatic steatosis. Extra administration of GCSF significantly aggravated palmitic acid (PA)-induced lipid accumulation in primary hepatocytes. Mechanically, GCSF could bind to granulocyte colony stimulating factor receptor (GCSFR) and regulate suppressors of cytokine signaling 3, Janus kinase, signal transducer and activator of transcription 3 (SOCS3-JAK-STAT3) pathway. GCSF also enhanced hepatic neutrophils and macrophages infiltration, thereby modulating NAFLD. These findings suggest that GCSF plays an important regulatory role in NAFLD and may be a potential therapeutic target for NAFLD.NEW & NOTEWORTHY We found GCSF was involved in lipid metabolism and NAFLD development. GCSF administration increased serum triglyceride levels in patients. GCSF deficiency alleviated HFD-induced insulin resistance and hepatic steatosis in mice. GCSF could directly act on hepatocytes through GCSFR-SOCS3-JAK-STAT3 pathway, and regulate the infiltration of immune cells into the liver to indirectly modulate NAFLD. Our finding indicates that GCSF may provide new strategies for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yuwei Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuefeng Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peihao Liu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueyang Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sha Li
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yishu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Song
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghua Wang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofen Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenxi Tang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Youming Li
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Wong SW, Ting YW, Yong YK, Tan HY, Barathan M, Riazalhosseini B, Bee CJ, Tee KK, Larsson M, Velu V, Shankar EM, Mohamed R. Chronic inflammation involves CCL11 and IL-13 to facilitate the development of liver cirrhosis and fibrosis in chronic hepatitis B virus infection. Scandinavian Journal of Clinical and Laboratory Investigation 2021; 81:147-159. [PMID: 33528280 DOI: 10.1080/00365513.2021.1876245] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pathogenesis involving non-alcoholic fatty liver disease (NAFLD) in the context of chronic HBV (CHB) virus infection requires to be understood for developing improved modalities of diagnosis and treatment. We retrospectively investigated the association between NAFLD and CHB virus infection in the context of liver fibrosis. Among the 522 consecutive CHB patients who underwent transient elastography between years 2013 and 2016, we studied 455 subjects in the current investigation. Controlled attenuation parameter (CAP) and liver stiffness measurement (LSM) scores were generally higher in patients with steatosis and fibrosis or cirrhosis. Antiviral treatment had significantly reduced the hepatitis B virus (HBV) viral load. Other liver function markers showed a significant positive correlation with both CAP and LSM scores. Plasma IL-13 was independently associated with increased CAP score where every increase of 1 unit of IL-13 was associated with an increase in CAP score by 0.98 unit. CCL11 was independently associated with LSM with every increase of CCL11 by a unit that, in turn, was associated with an increase of LSM score. We found that there was a high concurrence of NAFLD among patients with CHB virus infection. The presence of metabolic syndrome and chronic inflammation in CHB virus-infected patients were two independent factors that led to the progression of liver cirrhosis, with IL-13 playing the key role in linking the metabolic with the inflammatory components.
Collapse
Affiliation(s)
- Sui-Weng Wong
- Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi-Wen Ting
- Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yean-Kong Yong
- Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Laboratory Centre, Xiamen University Malaysia, Sepang, Malaysia
| | - Hong-Yien Tan
- Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Malaysia
| | - Muttiah Barathan
- Faculty of Medicine, Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| | - Behnaz Riazalhosseini
- Faculty of Medicine, Department of Pharmacology, University of Malaya, Kuala Lumpur, Malaysia.,Department of Microbiology, College of Basic Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Chook Jack Bee
- School of Healthcare and Medical Sciences, Sunway University, Selangor, Malaysia
| | - Kok-Keng Tee
- Faculty of Medicine, Department of Medical Microbiology, University of Malaya, Kuala Lumpur, Malaysia
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedicine and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Vijayakumar Velu
- Division of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.,Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Esaki M Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Rosmawati Mohamed
- Gastroenterology Unit, Department of Medicine, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Tukhvatulin A, Dzharullaeva A, Erokhova A, Zemskaya A, Balyasin M, Ozharovskaia T, Zubkova O, Shevlyagina N, Zhukhovitsky V, Fedyakina I, Pruss I, Shcheblyakov D, Naroditsky B, Logunov D, Gintsburg A. Adjuvantation of an Influenza Hemagglutinin Antigen with TLR4 and NOD2 Agonists Encapsulated in Poly(D,L-Lactide-Co-Glycolide) Nanoparticles Enhances Immunogenicity and Protection against Lethal Influenza Virus Infection in Mice. Vaccines (Basel) 2020; 8:vaccines8030519. [PMID: 32927915 PMCID: PMC7564367 DOI: 10.3390/vaccines8030519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022] Open
Abstract
Along with their excellent safety profiles, subunit vaccines are typically characterized by much weaker immunogenicity and protection efficacy compared to whole-pathogen vaccines. Here, we present an approach aimed at bridging this disadvantage that is based on synergistic collaboration between pattern-recognition receptors (PRRs) belonging to different families. We prepared a model subunit vaccine formulation using an influenza hemagglutinin antigen incorporated into poly-(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles adjuvanted with monophosphoryl lipid A (TLR4 agonist) and muramyl dipeptide (NOD2 agonist). The efficacy studies were conducted in comparison to control vaccine formulations containing individual PRR agonists. We show that the complex adjuvant based on TLR4 and NOD2 agonists potentiates proinflammatory cell responses (measured by activity of transcription factors and cytokine production both in vitro and in vivo) and enhances the phagocytosis of vaccine particles up to comparable levels of influenza virus uptake. Finally, mice immunized with vaccine nanoparticles containing both PRR agonists exhibited enhanced humoral (IgG, hemagglutination-inhibition antibody titers) and cellular (percentage of proliferating CD4+ T-cells, production of IFNɣ) immunity, leading to increased resistance to lethal influenza challenge. These results support the idea that complex adjuvants stimulating different PRRs may present a better alternative to individual PAMP-based adjuvants and could further narrow the gap between the efficacy of subunit versus whole-pathogen vaccines.
Collapse
|
6
|
Biochemical Changes in Blood of Patients with Duchenne Muscular Dystrophy Treated with Granulocyte-Colony Stimulating Factor. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4789101. [PMID: 31001554 PMCID: PMC6436375 DOI: 10.1155/2019/4789101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 01/05/2023]
Abstract
Introduction In addition to the “gold standard” of therapy—steroids and gene therapy–there are experimental trials using granulocyte-colony stimulating factor (G-CSF) for patients with Duchenne muscular dystrophy (DMD). The aim of this study was to present the biochemical changes in blood after repeating cycles of granulocyte-colony stimulating factor G-CSF therapy in children with DMD. Materials and Methods Nineteen patients, aged 5 to 15 years, with diagnosed DMD confirmed by genetic tests, participated; nine were in wheelchairs, and ten were mobile and independent. Patients had a clinical assessment and laboratory tests to evaluate hematological parameters and biochemistry. G-CSF (5μg/kg/day) was given subcutaneously for five days during five nonconsecutive months over the course of a year. Results We found a significant elevation of white blood cells, and the level of leucocytes returned to norm after each cycle. No signs of any inflammatory process were found by monitoring C-reactive protein. We did not detect significant changes in red blood cells, hemoglobin, and platelet levels or coagulation parameters. We found a significant elevation of uric acid, with normalization after finishing each treatment cycle. A significant decrease of the mean value activity of aspartate transaminase (AST) and alanine transaminase (ALT) of the G-CSF treatment was noted. After each five days of therapy, the level of cholesterol was significantly lowered. Also, glucose concentration significantly decreased after the fourth cycle. Conclusions G-SCF decreased the aminotransferases activity, cholesterol level, and glucose level in patients with DMD, which may be important for patients with DMD and metabolic syndrome.
Collapse
|
7
|
Hwang Y, Kim JC, Tae G. Significantly enhanced recovery of acute liver failure by liver targeted delivery of stem cells via heparin functionalization. Biomaterials 2019; 209:67-78. [PMID: 31026612 DOI: 10.1016/j.biomaterials.2019.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Abstract
Acute liver failure (ALF) occurs by insufficient detoxification of toxic materials in the liver, generating excess reactive oxygen species (ROS). Mesenchymal stem cell (MSC) therapy can be a promising approach for the treatment of liver diseases including ALF by anti-inflammatory activity and secretion of cytokines associated with tissue regeneration. However, the efficacy of MSC therapy is generally poor, mainly due to a low survival and engraftment of administered cells. In this study, we demonstrated that the enhanced delivery of human adipose-derived stem cells (hADSCs) to the damaged liver by the coating of lipid-conjugated heparin could result in significantly improved recovery from ALF in a mouse model. First, the therapeutic effect of secretomes of hADSCs on acetaminophen (APAP)-induced hepatic cell damage was confirmed regardless of the coating of lipid-conjugated heparin on hADSCs in vitro. Then, the therapeutic effects of lipid-conjugated heparin coated hADSCs (Lip-Hep/hADSC group) were analyzed compared to hADSCs themselves (hADSC group) using an APAP-induced ALF model in vivo. Intravenous administration of hADSCs could lower the elevated serum levels of aspartate transaminase (AST) and alanine transaminase (ALT), but Lip-Hep/hADSC group showed faster decrease in serum levels of AST and ALT to the normal values compared to hADSC group. Enhanced delivery and longer retention of hADSCs in the damage liver by the coating of lipid-conjugated heparin were confirmed by optical imaging of isolated organs using labeled cells and immunofluorescence staining of liver tissue sections against human nuclei. A significantly increased level of human hepatic growth factor (hHGF), a representative secretome from hADSC, significantly reduced levels of macrophage and CYP2E1, implying alleviated inflammatory response, were detected by immunofluorescence staining from Lip-Hep/hADSC group compared to hADSC group. These results well coincided with the improved recovery of the damaged liver from Lip-Hep/hADSC group than hADSC group in histological analysis. Thus, the coating of lipid-conjugated heparin on hADSCs has a great potential to improve the therapeutic effect of cells on the liver injury.
Collapse
Affiliation(s)
- Youngmin Hwang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jong Chul Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
8
|
Nam HH, Jun DW, Jang K, Saeed WK, Lee JS, Kang HT, Chae YJ. Granulocyte colony stimulating factor treatment in non-alcoholic fatty liver disease: beyond marrow cell mobilization. Oncotarget 2017; 8:97965-97976. [PMID: 29228666 PMCID: PMC5716706 DOI: 10.18632/oncotarget.18967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
Protective effects of granulocyte colony stimulating factor (G-CSF) in acute liver injury via marrow cell mobilization have been reported in several studies. But exact mode of action and optimal protocol of G-CSF has been still doubt in chronic disease. Here we investigated mode of action and optimization of G-CSF as a treatment for non-alcoholic fatty liver disease (NAFLD). Various doses of conventional G-CSF (30 μg/kg once weekly, once daily for 5 days, twice weekly) and long acting G-CSF (30 μg/kg once a month) were evaluated in two kinds of NAFLD animal models to optimize the G-CSF protocol. G-CSF receptor expression highest increased in NAFLD model among various liver diseases compare to control (NAFLD: 14.7 times, alcohol hepatitis: 7.1 times, cirrhosis: 2.4 times, and ischemia reperfusion: 6.8 times). G-CSF treatment reduced intrahepatic fat accumulation, and inflammation in two kinds of NAFLD animal models. G-CSF increased PI3K/Akt expression in hepatocyte as well as decreased apoptotic drive (increased Bcl-2 expression and decreased Bax expression) in animal model. Five day consecutive G-CSF treatment and once a month long acting G-CSF increased marrow derived stem cell marker in peripheral blood. But twice a week conventional G-CSF treatment did not increased CD34+ cell in peripheral blood and liver neither. Not only high dose G-CSF (once daily for 5 days) but also hepatotropic dose G-CSF (twice a week) significantly reduced hepatocyte apoptosis via PI3K and Akt pathway activation without marrow cell mobilization in NAFLD animal model.
Collapse
Affiliation(s)
- Ho Hyun Nam
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, South Korea
| | - Dae Won Jun
- Department Internal Medicine, Hanyang University School of Medicine, Seoul, South Korea
| | - Kiseok Jang
- Department of Pathology, Hanyang University School of Medicine, Seoul, South Korea
| | - Waqar Khalid Saeed
- Department Internal Medicine, Hanyang University School of Medicine, Seoul, South Korea
| | - Jai Sun Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, South Korea
| | - Hyeon Tae Kang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, South Korea
| | - Yeon Ji Chae
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, South Korea
| |
Collapse
|
9
|
Qu B, Chu Y, Zhu F, Wang B, Liu T, Yu B, Jin S. Granulocyte colony-stimulating factor enhances the therapeutic efficacy of bone marrow mesenchymal stem cell transplantation in rats with experimental acute pancreatitis. Oncotarget 2017; 8:21305-21314. [PMID: 28423506 PMCID: PMC5400585 DOI: 10.18632/oncotarget.15515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/07/2017] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Acute pancreatitis (AP) is one of the most common diseases involving necrotic inflammation. Bone marrow mesenchymal stem cells (BMMSCs) have the potential of multi-directional differentiation and self-renewal for tissue repair. It remains less clear if granulocyte colony-stimulating factor (G-CSF) can improve the therapeutic effect of BMMSC transplant in AP. Therefore, we explored this issue in a rat model of experimental AP. RESULTS Transplanted PKH26-positive BMMSCs were present in the injured pancreatic tissue, with some cells co-expressed pancreatic cellular markers, including Pax-4, Ngn3 and Nkx-6. Pathological, biochemical and serological data suggested an improvement in histological and functional recovery in these animals relative to control. Overall, the AP model rats received BMMSCs and G-CSF co-treatment showed better recovery in terms of tissue regeneration and blood biochemical levels relative to other groups. MATERIALS AND METHODS BMMSCs from donor rats were labeled with the fluorescent dye PKH26 and transfused into recipient rats with AP induced by L-arginine. The animals were divided into a control group, and groups treated with BMMSCs, G-CSF, and BMMSCs together with G-CSF. Therapeutic effects were evaluated histologically with immunohistochemistry and immunofluorescence, together with biochemical measurement of pancreatic markers. CONCLUSION G-CSF therapy with BMMSC transplantation improves histological and functional outcomes in rats with experimental AP.
Collapse
Affiliation(s)
- Bo Qu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China
| | - Yanjie Chu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China
| | - Fang Zhu
- Department of Gastroenterology and Hepatology, The First People's Hospital of Yongkang, Zhejiang Province, 321300, China
| | - Beibei Wang
- Department of the Second Internal Medicine Ward, The Yellow River Hospital, Tianjin, 300101, China
| | - Ting Liu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China
| | - Bo Yu
- Department of Gastroenterology and Hepatology, The Tailai County People's Hospital, Heilongjiang Province, 162400, China
| | - Shizhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China
| |
Collapse
|
10
|
Yu SJ, Yoon JH, Kim W, Lee JM, Lee YB, Cho Y, Lee DH, Lee M, Yoo JJ, Cho EJ, Lee JH, Kim YJ, Kim CY. Ultrasound-guided percutaneous portal transplantation of peripheral blood monocytes in patients with liver cirrhosis. Korean J Intern Med 2017; 32:261-268. [PMID: 27044856 PMCID: PMC5339463 DOI: 10.3904/kjim.2015.267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/02/2015] [Accepted: 09/06/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIMS Liver transplantation offers the only definite cure for cirrhosis but lacking donors is problem. Stem cell therapy is attractive in this setting. In this study, we aimed to explore the safety and efficacy of ultrasound-guided percutaneous portal transplantation of peripheral blood monocyte cell (PBMC) in cirrhotic patients. METHODS A total of nine decompensated cirrhotic patients were randomized into three groups: group 1 (n = 3) was control group, group 2 (n = 3) received granulocyte-colony stimulating factor (G-CSF) mobilization for 3 days, and group 3 (n = 3) received G-CSF mobilized PBMCs by leukapheresis and PBMC transplantation through ultrasound-guided percutaneous portal vein puncture. Liver function and clinical features were evaluated. RESULTS At baseline, the Child-Turcotte-Pugh and the model for end-stage liver disease scores were comparable in study groups. Compared with group 1, there was a tendency to improve liver function in group 3 at 6 months after treatment. Treatment was tolerable and no complications were encountered related to the G-CSF mobilization or percutaneous portal administration of PBMCs. Imaging studies showed patent portal veins at the end of the study period. CONCLUSIONS Autologous PBMC transplantation through ultrasound-guided percutaneous portal vein puncture could be considered as a safe alternative treatment for decompensated cirrhotic patients.
Collapse
Affiliation(s)
- Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Correspondence to Jung-Hwan Yoon, M.D. Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea Tel: +82-2-2072-2228 Fax: +82-2-743-6701 E-mail:
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yun Bin Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yuri Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Hyeon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Minjong Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong-Ju Yoo
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Chung Yong Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Qu B, Jiang HY, Wang BB, Tong JZ, Yu B, Zhang YH, Liu BR, Zhu F, Jin SZ. Transplantation of bone marrow-derived mesenchymal stem cells facilitates epithelial repair and relieves the impairment of gastrointestinal function in a rat model of enteritis. Clin Res Hepatol Gastroenterol 2015; 39:114-20. [PMID: 25511921 DOI: 10.1016/j.clinre.2014.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/13/2014] [Accepted: 07/18/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND To examine whether the bone marrow-derived MSCs (BM-MSCs) could facilitate epithelial repair and thereby reduce impairment of gastrointestinal structure and function in chronic murine enteritis induced by indomethacin (IDM). METHODS MSCs were isolated from young Sprague-Dawley rats. After in vitro expansion and characterization, BM-MSCs were labelled with the fluorescent dye PKH26 and transfused, via the tail veins, into rats with enteritis induced by IDM. The controls were infused with sterile saline. The homing and differentiation of the transplanted BM-MSCs were tracked by means of fluorescent staining. The clinical symptoms of the IDM-treated rats were assessed, and the macroscopic and microscopic histological evaluations of the intestines were performed. RESULTS Compared to controls that received saline infusion, BM-MSCs treated rats showed lower scores of weight loss, stool consistency, and stool blood. The PKH26-labelled cells resided at the injured intestine, where they co-localize with the proliferating cell nuclear antigen (PCNA), Lgr-5, and Msi-1. The BM-MSCs treated rats showed significantly higher intestinal villi with larger areas relative to the saline-treated rats. CONCLUSION The transplanted BM-MSCs are able to recognize the injured intestine, where they proliferate and transdifferentiate into intestinal stem cells which repair the injured intestinal tissues. Therefore, BM-MSCs are able to relieve the impairment of gastrointestinal function in IMD-treated rats.
Collapse
Affiliation(s)
- Bo Qu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, China
| | - Hai-Yan Jiang
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, China
| | - Bei-Bei Wang
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, China
| | - Jia-Zhao Tong
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, China
| | - Bo Yu
- Department of Gastroenterology and Hepatology, the Tailai County People's Hospital, Heilongjiang Province, China
| | - Yong-Hong Zhang
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, China
| | - Bing-Rong Liu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, China
| | - Fang Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, China
| | - Shi-Zhu Jin
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, China.
| |
Collapse
|
12
|
Margini C, Vukotic R, Brodosi L, Bernardi M, Andreone P. Bone marrow derived stem cells for the treatment of end-stage liver disease. World J Gastroenterol 2014; 20:9098-9105. [PMID: 25083082 PMCID: PMC4112892 DOI: 10.3748/wjg.v20.i27.9098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/27/2014] [Accepted: 04/16/2014] [Indexed: 02/06/2023] Open
Abstract
End-stage disease due to liver cirrhosis is an important cause of death worldwide. Cirrhosis results from progressive, extensive fibrosis and impaired hepatocyte regeneration. The only curative treatment is liver transplantation, but due to the several limitations of this procedure, the interest in alternative therapeutic strategies is increasing. In particular, the potential of bone marrow stem cell (BMSC) therapy in cirrhosis has been explored in different trials. In this article, we evaluate the results of 18 prospective clinical trials, and we provide a descriptive overview of recent advances in the research on hepatic regenerative medicine. The main message from the currently available data in the literature is that BMSC therapy is extremely promising in the context of liver cirrhosis. However, its application should be further explored in randomized, controlled trials with large cohorts and long follow-ups.
Collapse
|
13
|
Gaia S, Olivero A, Smedile A, Ruella M, Abate ML, Fadda M, Rolle E, Omedè P, Bondesan P, Passera R, Risso A, Aragno M, Marzano A, Ciancio A, Rizzetto M, Tarella C. Multiple courses of G-CSF in patients with decompensated cirrhosis: consistent mobilization of immature cells expressing hepatocyte markers and exploratory clinical evaluation. Hepatol Int 2013. [PMID: 26202037 DOI: 10.1007/s12072-013-9473-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Bone marrow-derived cells (BMCs) include stem cells capable of self-renewal and differentiation into a variety of cell types. Administration of granulocyte colony-stimulating factor (G-CSF) induces the circulation of BMCs in the peripheral blood. A phase II prospective trial was carried out for evaluation of BMC mobilization induced by multiple courses of G-CSF in cirrhotic patients. PATIENTS AND METHODS Fifteen patients with advanced liver cirrhosis (Child-Pugh score ≥6 points) were enrolled and treated with a 3-day G-CSF course, administered at 3-month intervals for a total of four courses. BMC mobilization was assessed by evaluating CD34+ve cells using flow cytometry. Expressions of multiple hepatic and stem markers were assessed on mobilized CD34+ve cells. Feasibility and safety were explored; clinical and adverse events were compared to those of a control group. Telomere length was monitored to rule out early cell aging caused by G-CSF. RESULTS A significant increase in G-CSF-induced circulating CD34+ve cells was consistently observed, although a progressive reduction of peak values was documented from cycle I to IV (p < 0.005). Mobilized CD34+ve cells expressed both stem and multiple hepatocyte markers, including mRNA of albumin and CYP2B6 (cytochrome P2 B6). Treatment was well tolerated, with no severe adverse events and no significant telomere length shortening following G-CSF. The procedure was safe. Overall, ten patients had either improved or had stable liver function tests (such as the Child-Pugh score), whereas five worsened and died from liver-related causes. CONCLUSION This study demonstrates that G-CSF can be safely administrated up to four times over a 1-year period in decompensated cirrhotic patients. The repeated BMC mobilization favors the circulation of stem cells coexpressing hepatic markers and mRNA of liver-related genes.
Collapse
Affiliation(s)
- Silvia Gaia
- Department of Gastro-hepatology, A.O. Città della Salute e della Scienza, S. Giovanni Battista Hospital, University of Turin, C. Bramante 88, 10126, Turin, Italy.
| | - Antonella Olivero
- Department of Gastro-hepatology, A.O. Città della Salute e della Scienza, S. Giovanni Battista Hospital, University of Turin, C. Bramante 88, 10126, Turin, Italy
| | - Antonina Smedile
- Department of Gastro-hepatology, A.O. Città della Salute e della Scienza, S. Giovanni Battista Hospital, University of Turin, C. Bramante 88, 10126, Turin, Italy
| | - Marco Ruella
- Division of Hematology and Cell Therapy, University of Torino, Mauriziano Hospital, Turin, Italy
| | - Maria Lorena Abate
- Department of Gastro-hepatology, A.O. Città della Salute e della Scienza, S. Giovanni Battista Hospital, University of Turin, C. Bramante 88, 10126, Turin, Italy
| | - Maurizio Fadda
- Department of Clinical Nutrition, A.O. Città della Salute e della Scienza, S. Giovanni Battista Hospital, University of Turin, C. Bramante 88, 10126, Turin, Italy
| | - Emanuela Rolle
- Department of Gastro-hepatology, A.O. Città della Salute e della Scienza, S. Giovanni Battista Hospital, University of Turin, C. Bramante 88, 10126, Turin, Italy
| | - Paola Omedè
- Division of Hematology 1, A.O. Città della Salute e della Scienza, S. Giovanni Battista Hospital, University of Turin, C. Bramante 88, 10126, Turin, Italy
| | - Paola Bondesan
- Division of Hematology 1, A.O. Città della Salute e della Scienza, S. Giovanni Battista Hospital, University of Turin, C. Bramante 88, 10126, Turin, Italy
| | - Roberto Passera
- Division of Nuclear Medicine 2, A.O. Città della Salute e della Scienza, S. Giovanni Battista Hospital, University of Turin, C. Bramante 88, 10126, Turin, Italy
| | - Alessandra Risso
- Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Manuela Aragno
- Department of Medicine and Experimental Oncology, University of Torino, Turin, Italy
| | - Alfredo Marzano
- Department of Gastro-hepatology, A.O. Città della Salute e della Scienza, S. Giovanni Battista Hospital, University of Turin, C. Bramante 88, 10126, Turin, Italy
| | - Alessia Ciancio
- Department of Gastro-hepatology, A.O. Città della Salute e della Scienza, S. Giovanni Battista Hospital, University of Turin, C. Bramante 88, 10126, Turin, Italy
| | - Mario Rizzetto
- Department of Gastro-hepatology, A.O. Città della Salute e della Scienza, S. Giovanni Battista Hospital, University of Turin, C. Bramante 88, 10126, Turin, Italy
| | - Corrado Tarella
- Division of Hematology and Cell Therapy, University of Torino, Mauriziano Hospital, Turin, Italy
| |
Collapse
|
14
|
Reply to letter: "A title that may not be appropriate". Ann Surg 2013; 259:e9. [PMID: 24096749 DOI: 10.1097/sla.0000000000000278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Rennert RC, Sorkin M, Garg RK, Gurtner GC. Stem cell recruitment after injury: lessons for regenerative medicine. Regen Med 2013; 7:833-50. [PMID: 23164083 DOI: 10.2217/rme.12.82] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tissue repair and regeneration are thought to involve resident cell proliferation as well as the selective recruitment of circulating stem and progenitor cell populations through complex signaling cascades. Many of these recruited cells originate from the bone marrow, and specific subpopulations of bone marrow cells have been isolated and used to augment adult tissue regeneration in preclinical models. Clinical studies of cell-based therapies have reported mixed results, however, and a variety of approaches to enhance the regenerative capacity of stem cell therapies are being developed based on emerging insights into the mechanisms of progenitor cell biology and recruitment following injury. This article discusses the function and mechanisms of recruitment of important bone marrow-derived stem and progenitor cell populations following injury, as well as the emerging therapeutic applications targeting these cells.
Collapse
Affiliation(s)
- Robert C Rennert
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive West, Hagey Building GK-201, Stanford, CA 94305-5148, USA
| | | | | | | |
Collapse
|
16
|
Wan Z, You S, Rong Y, Zhu B, Zhang A, Zang H, Xiao L, Xie G, Xin S. CD34+ hematopoietic stem cells mobilization, paralleled with multiple cytokines elevated in patients with HBV-related acute-on-chronic liver failure. Dig Dis Sci 2013; 58:448-57. [PMID: 23095991 DOI: 10.1007/s10620-012-2458-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 10/08/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND Recent studies indicate that bone marrow (BM)-derived stem cells contribute to liver regeneration. But limited information is available on the dynamic and mechanisms of mobilization of BM-derived hematopoietic stem cells (HSCs) after acute-on-chronic liver failure (ACLF). AIMS The purpose of this study was to assess the mobilization of BM-derived CD34+ HSCs in ACLF patients, and elucidate the association of stress-induced cytokines in HSCs mobilization and/or liver repair in ACLF patients. METHODS Thirty patients with HBV-related ACLF, 30 patients undergoing chronic hepatitis B, and 20 healthy controls were enrolled. The percentages of peripheral blood CD34+ cells were determined by two-color flow cytometry. The hepatic commitment of mobilized CD34+ cells was investigated by RT-PCR. The serum levels of stress-induced cytokines were determined by enzyme-linked immunosorbent assays. RESULTS A significant increase of circulating CD34+ cells was observed in ACLF patients. RT-PCR analyses showed that the mobilized CD34+ cells expressed both CD34 mRNA and liver-specific markers including cytokeratin 19 and α-fetoprotein. In parallel with mobilization of BM-derived CD34+ cells, elevated serum levels of hepatocyte growth factor, interleukin-6, stem cell factor, granulocyte colony-stimulating factor and matrix metalloproteinase 9 were observed in ACLF patients. CONCLUSION We demonstrated that ACLF led to mobilization of CD34+ cells, which had a hepatic differentiation potential.
Collapse
Affiliation(s)
- Zhihong Wan
- Liver Failure Treatment and Research Center, Beijing 302 Hospital, No. 100 Xisihuan Middle Road, Fengtai District, Beijing, 100039, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Spahr L, Chalandon Y, Terraz S, Kindler V, Rubbia-Brandt L, Frossard JL, Breguet R, Lanthier N, Farina A, Passweg J, Becker CD, Hadengue A. Autologous bone marrow mononuclear cell transplantation in patients with decompensated alcoholic liver disease: a randomized controlled trial. PLoS One 2013; 8:e53719. [PMID: 23341981 PMCID: PMC3544843 DOI: 10.1371/journal.pone.0053719] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/05/2012] [Indexed: 12/20/2022] Open
Abstract
Objective Impaired liver regeneration is associated with a poor outcome in patients with decompensated alcoholic liver disease (ALD). We assessed whether autologous bone marrow mononuclear cell transplantation (BMMCT) improved liver function in decompensated ALD. Design 58 patients (mean age 54 yrs; mean MELD score 19, all with cirrhosis, 81% with alcoholic steatohepatitis at baseline liver biopsy) were randomized early after hospital admission to standard medical therapy (SMT) alone (n = 30), including steroids in patients with a Maddrey’s score ≥32, or combined with G-CSF injections and autologous BMMCT into the hepatic artery (n = 28). Bone marrow cells were harvested, isolated and reinfused the same day. The primary endpoint was a ≥3 points decrease in the MELD score at 3 months, corresponding to a clinically relevant improvement in liver function. Liver biopsy was repeated at week 4 to assess changes in Ki67+/CK7+ hepatic progenitor cells (HPC) compartment. Results Both study groups were comparable at baseline. After 3 months, 2 and 4 patients died in the BMMCT and SMT groups, respectively. Adverse events were equally distributed between groups. Moderate alcohol relapse occurred in 31% of patients. The MELD score improved in parallel in both groups during follow-up with 18 patients (64%) from the BMMCT group and 18 patients (53%) from the SMT group reaching the primary endpoint (p = 0.43 (OR 1.6, CI 0.49–5.4) in an intention to treat analysis. Comparing liver biopsy at 4 weeks to baseline, steatosis improved (p<0.001), and proliferating HPC tended to decrease in both groups (−35 and −33%, respectively). Conclusion Autologous BMMCT, compared to SMT is a safe procedure but did not result in an expanded HPC compartment or improved liver function. These data suggest either insufficient regenerative stimulation after BMMCT or resistance to liver regenerative drive in patients with decompensated alcoholic cirrhosis. Trial Registration Controlled-Trials.com ISRCTN83972743.
Collapse
Affiliation(s)
- Laurent Spahr
- Division of Gastroenterology and Hepatology, University Hospitals and Faculty of Medicine, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Saiman Y, Friedman SL. The role of chemokines in acute liver injury. Front Physiol 2012; 3:213. [PMID: 22723782 PMCID: PMC3379724 DOI: 10.3389/fphys.2012.00213] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/30/2012] [Indexed: 11/25/2022] Open
Abstract
Chemokines are small molecular weight proteins primarily known to drive migration of immune cell populations. In both acute and chronic liver injury, hepatic chemokine expression is induced resulting in inflammatory cell infiltration, angiogenesis, and cell activation and survival. During acute injury, massive parenchymal cell death due to apoptosis and/or necrosis leads to chemokine production by hepatocytes, cholangiocytes, Kupffer cells, hepatic stellate cells, and sinusoidal endothelial cells. The specific chemokine profile expressed during injury is dependent on both the type and course of injury. Hepatotoxicity by acetaminophen for example leads to cellular necrosis and activation of Toll-like receptors while the inciting insult in ischemia reperfusion injury produces reactive oxygen species and subsequent production of pro-inflammatory chemokines. Chemokine expression by these cells generates a chemoattractant gradient promoting infiltration by monocytes/macrophages, NK cells, NKT cells, neutrophils, B cells, and T cells whose activity are highly regulated by the specific chemokine profiles within the liver. Additionally, resident hepatic cells express chemokine receptors both in the normal and injured liver. While the role of these receptors in normal liver has not been well described, during injury, receptor up-regulation, and chemokine engagement leads to cellular survival, proliferation, apoptosis, fibrogenesis, and expression of additional chemokines and growth factors. Hepatic-derived chemokines can therefore function in both paracrine and autocrine fashions further expanding their role in liver disease. More recently it has been appreciated that chemokines can have diverging effects depending on their temporal expression pattern and the type of injury. A better understanding of chemokine/chemokine receptor axes will therefore pave the way for development of novel targeted therapies for the treatment of liver disease.
Collapse
Affiliation(s)
- Yedidya Saiman
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine New York, NY, USA
| | | |
Collapse
|
19
|
Granulocyte colony-stimulating factor increases the therapeutic efficacy of bone marrow mononuclear cell transplantation in cerebral ischemia in mice. BMC Neurosci 2011; 12:61. [PMID: 21699735 PMCID: PMC3146423 DOI: 10.1186/1471-2202-12-61] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 06/24/2011] [Indexed: 12/04/2022] Open
Abstract
Background Bone marrow mononuclear cell (BMMC) transplantation is a promising therapy for cerebral ischemia; however, little is known if its therapeutic efficacy may be improved by co-administration of potential modulatory factors in vivo. To explore this possibility, the present study examined the effect of BMMCs and G-CSF on cell proliferation, early neuronal development and neurological function recovery in experimental cerebral ischemia relative to controls that received neither treatment. Result Ischemia/infarct area was significantly reduced in BMMCs+G-CSF group relative to animal groups treated with BMMCs only, G-CSF only or saline. Transplanted BMMCs were found to colocalize with the proliferative cell nuclear antigen (PCNA) and the immature neuronal marker doublecortin (DCX). The BMMCs+G-CSF group showed increased numerical density of cells expressing PCNA and DCX, improved performance in adhesive sticker removal test and reduced neurological function severity scores relative to other groups in a time-dependent manner. Conclusion BMMCs and G-CSF co-administration exhibits synergistic beneficial effect over time. This effect could be at least partially related to increased proliferation and differentiation of bone marrow stem cells and enhanced host brain regeneration and functional recovery. The results suggest that G-CSF can increase the therapeutic efficacy of BMMCs transplantation in an experimental mouse model of cerebral ischemia.
Collapse
|
20
|
Jin SZ, Meng XW, Sun X, Han MZ, Liu BR, Wang XH, Pei FH. Hepatocyte growth factor promotes liver regeneration induced by transfusion of bone marrow mononuclear cells in a murine acute liver failure model. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2010; 18:397-405. [PMID: 21076985 DOI: 10.1007/s00534-010-0343-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Shi-Zhu Jin
- Department of Gastroenterology, The First Hospital; Jilin University; Changchun 130021 China
| | - Xiang-Wei Meng
- Department of Gastroenterology, The First Hospital; Jilin University; Changchun 130021 China
| | - Xun Sun
- Department of Pathology, The First Hospital; Jilin University; Changchun 130021 China
| | - Ming-Zi Han
- Department of Gastroenterology, The Second Affiliated Hospital; Harbin Medical University; Harbin 150086 China
| | - Bing-Rong Liu
- Department of Gastroenterology, The Second Affiliated Hospital; Harbin Medical University; Harbin 150086 China
| | - Xin-Hong Wang
- Department of Gastroenterology, The First Hospital; Jilin University; Changchun 130021 China
| | - Feng-Hua Pei
- Department of Gastroenterology, The Second Affiliated Hospital; Harbin Medical University; Harbin 150086 China
| |
Collapse
|
21
|
Transplanted bone marrow stem cells relocate to infarct penumbra and co-express endogenous proliferative and immature neuronal markers in a mouse model of ischemic cerebral stroke. BMC Neurosci 2010; 11:138. [PMID: 20973978 PMCID: PMC2974740 DOI: 10.1186/1471-2202-11-138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 10/25/2010] [Indexed: 12/18/2022] Open
Abstract
Background Several studies demonstrate that neurogenesis may be induced or activated following vascular insults, which may be important for neuronal regeneration and functional recovery. Understanding the cellular mechanism underlying stroke-associated neurogenesis is of neurobiological as well as neurological/clinical relevance. The present study attempted to explore potential homing and early development of transplanted bone marrow stem cells in mouse forebrain after focal occlusion of the middle cerebral artery, an experimental model of ischemic stroke. Results Bone marrow stem cells isolated from donor mice were confirmed by analysis of surface antigen profile, and were pre-labeled with a lipophilic fluorescent dye PKH26, and subsequently transfused into recipient mice with middle cerebral artery coagulation. A large number of PKH26-labeled cells were detected surrounding the infarct site, most of which colocalized with immunolabelings for the proliferating cell nuclear antigen (PCNA) and some also colocalized with the immature neuronal marker doublecortin (DCX) during 1-2 weeks after the bone marrow cells transfusion. Conclusions The present study shows that transplanted bone morrow cells largely relocate to the infarct penumbra in ischemic mouse cerebrum. These transplanted bone marrow cells appear to undergo a process of in situ proliferation and develop into putative cortical interneurons during the early phase of experimental vascular injury.
Collapse
|
22
|
Piscaglia AC, Campanale M, Gasbarrini A, Gasbarrini G. Stem cell-based therapies for liver diseases: state of the art and new perspectives. Stem Cells Int 2010; 2010:259461. [PMID: 21048845 PMCID: PMC2963137 DOI: 10.4061/2010/259461] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 07/04/2010] [Indexed: 12/19/2022] Open
Abstract
Millions of patients worldwide suffer from end-stage liver pathologies, whose only curative therapy is liver transplantation (OLT). Given the donor organ shortage, alternatives to OLT have been evaluated, including cell therapies. Hepatocyte transplantation has been attempted to cure metabolic liver disorders and end-stage liver diseases. The evaluation of its efficacy is complicated by the shortage of human hepatocytes and their difficult expansion and cryopreservation. Recent advances in cell biology have led to the concept of "regenerative medicine", based on the therapeutic potential of stem cells (SCs). Different types of SCs are theoretically eligible for liver cell replacement. These include embryonic and fetal SCs, induced pluripotent cells, annex SCs, endogenous liver SCs, and extrahepatic adult SCs. Aim of this paper is to critically analyze the possible sources of SCs suitable for liver repopulation and the results of the clinical trials that have been published until now.
Collapse
Affiliation(s)
- Anna Chiara Piscaglia
- “Gastrointestinal and Liver Stem Cell Research Group” (GILSteR), Department of Internal Medicine, Gemelli Hospital, Catholic University of Rome, Largo A. Gemelli 8-00168 Roma, Italy
| | - Mariachiara Campanale
- “Gastrointestinal and Liver Stem Cell Research Group” (GILSteR), Department of Internal Medicine, Gemelli Hospital, Catholic University of Rome, Largo A. Gemelli 8-00168 Roma, Italy
| | - Antonio Gasbarrini
- “Gastrointestinal and Liver Stem Cell Research Group” (GILSteR), Department of Internal Medicine, Gemelli Hospital, Catholic University of Rome, Largo A. Gemelli 8-00168 Roma, Italy
| | - Giovanni Gasbarrini
- “Gastrointestinal and Liver Stem Cell Research Group” (GILSteR), Department of Internal Medicine, Gemelli Hospital, Catholic University of Rome, Largo A. Gemelli 8-00168 Roma, Italy
| |
Collapse
|