1
|
Sani F, Sani M, Moayedfard Z, Darayee M, Tayebi L, Azarpira N. Potential advantages of genetically modified mesenchymal stem cells in the treatment of acute and chronic liver diseases. Stem Cell Res Ther 2023; 14:138. [PMID: 37226279 DOI: 10.1186/s13287-023-03364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Liver damage caused by toxicity can lead to various severe conditions, such as acute liver failure (ALF), fibrogenesis, and cirrhosis. Among these, liver cirrhosis (LC) is recognized as the leading cause of liver-related deaths globally. Unfortunately, patients with progressive cirrhosis are often on a waiting list, with limited donor organs, postoperative complications, immune system side effects, and high financial costs being some of the factors restricting transplantation. Although the liver has some capacity for self-renewal due to the presence of stem cells, it is usually insufficient to prevent the progression of LC and ALF. One potential therapeutic approach to improving liver function is the transplantation of gene-engineered stem cells. Several types of mesenchymal stem cells from various sources have been suggested for stem cell therapy for liver disease. Genetic engineering is an effective strategy that enhances the regenerative potential of stem cells by releasing growth factors and cytokines. In this review, we primarily focus on the genetic engineering of stem cells to improve their ability to treat damaged liver function. We also recommend further research into accurate treatment methods that involve safe gene modification and long-term follow-up of patients to increase the effectiveness and reliability of these therapeutic strategies.
Collapse
Affiliation(s)
- Farnaz Sani
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Sani
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Moayedfard
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Darayee
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Khalili Street, P.O. Box: 7193711351, Shiraz, Iran.
| |
Collapse
|
2
|
Varkouhi AK, Monteiro APT, Tsoporis JN, Mei SHJ, Stewart DJ, Dos Santos CC. Genetically Modified Mesenchymal Stromal/Stem Cells: Application in Critical Illness. Stem Cell Rev Rep 2021; 16:812-827. [PMID: 32671645 PMCID: PMC7363458 DOI: 10.1007/s12015-020-10000-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Critical illnesses including sepsis, acute respiratory distress syndromes, ischemic cardiovascular disorders and acute organ injuries are associated with high mortality, morbidity as well as significant health care system expenses. While these diverse conditions require different specific therapeutic approaches, mesenchymal stem/stromal cell (MSCs) are multipotent cells capable of self-renewal, tri-lineage differentiation with a broad range regenerative and immunomodulatory activities, making them attractive for the treatment of critical illness. The therapeutic effects of MSCs have been extensively investigated in several pre-clinical models of critical illness as well as in phase I and II clinical cell therapy trials with mixed results. Whilst these studies have demonstrated the therapeutic potential for MSC therapy in critical illness, optimization for clinical use is an ongoing challenge. MSCs can be readily genetically modified by application of different techniques and tools leading to overexpress or inhibit genes related to their immunomodulatory or regenerative functions. Here we will review recent approaches designed to enhance the therapeutic potential of MSCs with an emphasis on the technology used to generate genetically modified cells, target genes, target diseases and the implication of genetically modified MSCs in cell therapy for critical illness.
Collapse
Affiliation(s)
- Amir K Varkouhi
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology (NJIT), Newark, NJ, 07102, USA
| | - Ana Paula Teixeira Monteiro
- Keenan and Li Ka Shing Knowledge Institute, University Health Toronto - St. Michael's Hospital, Toronto, Ontario, Canada.,Institute of Medical Sciences and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - James N Tsoporis
- Keenan and Li Ka Shing Knowledge Institute, University Health Toronto - St. Michael's Hospital, Toronto, Ontario, Canada
| | - Shirley H J Mei
- Ottawa Hospital Research Institute and the University of Ottawa, Ottawa, ON, Canada
| | - Duncan J Stewart
- Ottawa Hospital Research Institute and the University of Ottawa, Ottawa, ON, Canada
| | - Claudia C Dos Santos
- Keenan and Li Ka Shing Knowledge Institute, University Health Toronto - St. Michael's Hospital, Toronto, Ontario, Canada. .,Interdepartmental Division of Critical Care, St. Michael's Hospital/University of Toronto, 30 Bond Street, Room 4-008, Toronto, ON, M5B 1WB, Canada.
| |
Collapse
|
3
|
Hu C, Wu Z, Li L. Pre-treatments enhance the therapeutic effects of mesenchymal stem cells in liver diseases. J Cell Mol Med 2019; 24:40-49. [PMID: 31691463 PMCID: PMC6933358 DOI: 10.1111/jcmm.14788] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022] Open
Abstract
Liver diseases caused by viral infection, alcohol abuse and metabolic disorders can progress to end‐stage liver failure, liver cirrhosis and liver cancer, which are a growing cause of death worldwide. Although liver transplantation and hepatocyte transplantation are useful strategies to promote liver regeneration, they are limited by scarce sources of organs and hepatocytes. Mesenchymal stem cells (MSCs) restore liver injury after hepatogenic differentiation and exert immunomodulatory, anti‐inflammatory, antifibrotic, antioxidative stress and antiapoptotic effects on liver cells in vivo. After isolation and culture in vitro, MSCs are faced with nutrient and oxygen deprivation, and external growth factors maintain MSC capacities for further applications. In addition, MSCs are placed in a harsh microenvironment, and anoikis and inflammation after transplantation in vivo significantly decrease their regenerative capacity. Pre‐treatment with chemical agents, hypoxia, an inflammatory microenvironment and gene modification can protect MSCs against injury, and pre‐treated MSCs show improved hepatogenic differentiation, homing capacity, survival and paracrine effects in vitro and in vivo in regard to attenuating liver injury. In this review, we mainly focus on pre‐treatments and the underlying mechanisms for improving the therapeutic effects of MSCs in various liver diseases. Thus, we provide evidence for the development of MSC‐based cell therapy to prevent acute or chronic liver injury. Mesenchymal stem cells have potential as a therapeutic to prolong the survival of patients with end‐stage liver diseases in the near future.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongwen Wu
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Hepatoprotective effect of flavonoid-enriched fraction from Cyclocarya paliurus leaves on LPS/D-GalN-induced acute liver failure. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
5
|
Hu WB, Ouyang KH, Wu GQ, Chen H, Xiong L, Liu X, Wang N, Wang WJ. Hepatoprotective effect of flavonoid-enriched fraction from Cyclocarya paliurus leaves on LPS/D-GalN-induced acute liver failure. J Funct Foods 2018. [DOI: https://doi.org/10.1016/j.jff.2018.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
6
|
Wang YH, Wu DB, Chen B, Chen EQ, Tang H. Progress in mesenchymal stem cell-based therapy for acute liver failure. Stem Cell Res Ther 2018; 9:227. [PMID: 30143052 PMCID: PMC6109312 DOI: 10.1186/s13287-018-0972-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute liver failure is a life-threatening clinical syndrome characterized by rapid development of hepatocellular necrosis leading to high mortality and resource costs. Numerous treatment strategies for acute liver failure simply prevent complications and decelerate disease progression. The only curative treatment for acute liver failure is liver transplantation, but there are many restrictions on the application of liver transplantation. In recent years, a growing number of studies have shown that stem cells can effectively treat acute liver failure. Several types of stem cells have been used to study liver diseases; mesenchymal stem cells are most commonly used because they are easy to obtain and present no ethical problems. The aims of this article are to review the current knowledge regarding therapeutic mechanisms of mesenchymal stem cells in acute liver failure, to discuss recent advancements in preclinical and clinical studies in the treatment of mesenchymal stem cells, and to summarize the methodological improvement of mesenchymal stem cell transplantation in treating liver failure.
Collapse
Affiliation(s)
- Yong-Hong Wang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Dong-Bo Wu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Bing Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Translational Advances of Hydrofection by Hydrodynamic Injection. Genes (Basel) 2018; 9:genes9030136. [PMID: 29494564 PMCID: PMC5867857 DOI: 10.3390/genes9030136] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/11/2022] Open
Abstract
Hydrodynamic gene delivery has proven to be a safe and efficient procedure for gene transfer, able to mediate, in murine model, therapeutic levels of proteins encoded by the transfected gene. In different disease models and targeting distinct organs, it has been demonstrated to revert the pathologic symptoms and signs. The therapeutic potential of hydrofection led different groups to work on the clinical translation of the procedure. In order to prevent the hemodynamic side effects derived from the rapid injection of a large volume, the conditions had to be moderated to make them compatible with its use in mid-size animal models such as rat, hamster and rabbit and large animals as dog, pig and primates. Despite the different approaches performed to adapt the conditions of gene delivery, the results obtained in any of these mid-size and large animals have been poorer than those obtained in murine model. Among these different strategies to reduce the volume employed, the most effective one has been to exclude the vasculature of the target organ and inject the solution directly. This procedure has permitted, by catheterization and surgical procedures in large animals, achieving protein expression levels in tissue close to those achieved in gold standard models. These promising results and the possibility of employing these strategies to transfer gene constructs able to edit genes, such as CRISPR, have renewed the clinical interest of this procedure of gene transfer. In order to translate the hydrodynamic gene delivery to human use, it is demanding the standardization of the procedure conditions and the molecular parameters of evaluation in order to be able to compare the results and establish a homogeneous manner of expressing the data obtained, as ‘classic’ drugs.
Collapse
|
8
|
Wang K, Li Y, Zhu T, Zhang Y, Li W, Lin W, Li J, Zhu C. Overexpression of c-Met in bone marrow mesenchymal stem cells improves their effectiveness in homing and repair of acute liver failure. Stem Cell Res Ther 2017; 8:162. [PMID: 28679425 PMCID: PMC5499016 DOI: 10.1186/s13287-017-0614-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 12/20/2022] Open
Abstract
Background Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) has emerged as a novel therapy for acute liver failure (ALF). However, the homing efficiency of BMSCs to the injured liver sites appears to be poor. In this study, we aimed to determine if overexpression of c-Met in BMSCs could promote the homing ability of BMSCs to rat livers affected by ALF. Methods Overexpression of c-Met in BMSCs (c-Met-BMSCs) was attained by transfection of naive BMSCs with the lenti-c-Met-GFP. The impact of transplanted c-Met-BMSCs on both homing and repair of ALF was evaluated and compared with lenti-GFP empty vector transfected BMSCs (control BMSCs). Results After cells were transfected with the lenti-c-Met-GFP vector, the BMSCs displayed very high expression of c-Met protein as demonstrated by Western blot. In addition, in vitro transwell migration assays showed that the migration ability of c-Met-BMSCs was significantly increased in comparison with that of control BMSCs (P < 0.05), and was dependent on hepatocyte growth factor (HGF). Furthermore, rats with ALF that received transplanted c-Met-BMSCs showed significantly improved homing ability to the injured liver; this was accompanied by elevated survival rates and liver function in the ALF rats. Parallel pathological examination further confirmed that transplantation of c-Met-BMSCs ameliorated liver injury with reduced hepatic activity index (HAI) scores, and that the effects of c-Met-BMSCs were more profound than those of control BMSCs. Conclusions Overexpression of c-Met promotes the homing of BMSCs to injured hepatic sites in a rat model of ALF, thereby improving the efficacy of BMSC therapy for ALF repair.
Collapse
Affiliation(s)
- Kun Wang
- Department of Infectious Disease, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China.,Department of Infectious Disease, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Yuwen Li
- Department of Pediatrics, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Tiantian Zhu
- Department of Infectious Disease, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China.,Department of Infectious Disease, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Yongting Zhang
- Department of Infectious Disease, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Wenting Li
- Department of Infectious Disease, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Wenyu Lin
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jun Li
- Department of Infectious Disease, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Chuanlong Zhu
- Department of Infectious Disease, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Shoda LK, Battista C, Siler SQ, Pisetsky DS, Watkins PB, Howell BA. Mechanistic Modelling of Drug-Induced Liver Injury: Investigating the Role of Innate Immune Responses. GENE REGULATION AND SYSTEMS BIOLOGY 2017; 11:1177625017696074. [PMID: 28615926 PMCID: PMC5459514 DOI: 10.1177/1177625017696074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/04/2017] [Indexed: 12/19/2022]
Abstract
Drug-induced liver injury (DILI) remains an adverse event of significant concern for drug development and marketed drugs, and the field would benefit from better tools to identify liver liabilities early in development and/or to mitigate potential DILI risk in otherwise promising drugs. DILIsym software takes a quantitative systems toxicology approach to represent DILI in pre-clinical species and in humans for the mechanistic investigation of liver toxicity. In addition to multiple intrinsic mechanisms of hepatocyte toxicity (ie, oxidative stress, bile acid accumulation, mitochondrial dysfunction), DILIsym includes the interaction between hepatocytes and cells of the innate immune response in the amplification of liver injury and in liver regeneration. The representation of innate immune responses, detailed here, consolidates much of the available data on the innate immune response in DILI within a single framework and affords the opportunity to systematically investigate the contribution of the innate response to DILI.
Collapse
Affiliation(s)
- Lisl Km Shoda
- DILIsym Services, Inc., Research Triangle Park, NC, USA
| | - Christina Battista
- DILIsym Services, Inc., Research Triangle Park, NC, USA.,UNC Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, NC, USA
| | - Scott Q Siler
- DILIsym Services, Inc., Research Triangle Park, NC, USA
| | - David S Pisetsky
- Medical Research Service, Durham VA Medical Center and Duke University Medical Center, Durham, NC, USA
| | - Paul B Watkins
- UNC Institute for Drug Safety Sciences, University of North Carolina at Chapel Hill, Research Triangle Park, NC, USA
| | | |
Collapse
|
10
|
Kamimura K, Yokoo T, Abe H, Kobayashi Y, Ogawa K, Shinagawa Y, Inoue R, Terai S. Image-Guided Hydrodynamic Gene Delivery: Current Status and Future Directions. Pharmaceutics 2015; 7:213-23. [PMID: 26308044 PMCID: PMC4588196 DOI: 10.3390/pharmaceutics7030213] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 12/13/2022] Open
Abstract
Hydrodynamics-based delivery has been used as an experimental tool to express transgene in small animals. This in vivo gene transfer method is useful for functional analysis of genetic elements, therapeutic effect of oligonucleotides, and cancer cells to establish the metastatic cancer animal model for experimental research. Recent progress in the development of image-guided procedure for hydrodynamics-based gene delivery in large animals directly supports the clinical applicability of this technique. This review summarizes the current status and recent progress in the development of hydrodynamics-based gene delivery and discusses the future directions for its clinical application.
Collapse
Affiliation(s)
- Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| | - Yuji Kobayashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| | - Kohei Ogawa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| | - Yoko Shinagawa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| | - Ryosuke Inoue
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| |
Collapse
|
11
|
Abstract
Hydrodynamic delivery (HD) is a broadly used procedure for DNA and RNA delivery in rodents, serving as a powerful tool for gene/protein drug discovery, gene function analysis, target validation, and identification of elements in regulating gene expression in vivo. HD involves a pressurized injection of a large volume of solution into a vasculature. New procedures are being developed to satisfy the need for a safe and efficient gene delivery in clinic. Here, we summarize the fundamentals of HD, its applications, and future perspectives for clinical use.
Collapse
Affiliation(s)
- Takeshi Suda
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, School of Pharmacy, Athens, GA, USA
| |
Collapse
|
12
|
Li W, Zhu C, Li Y, Wu Q, Gao R. Mest attenuates CCl4-induced liver fibrosis in rats by inhibiting the Wnt/β-catenin signaling pathway. Gut Liver 2014; 8:282-91. [PMID: 24827625 PMCID: PMC4026646 DOI: 10.5009/gnl.2014.8.3.282] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background/Aims The Wnt/β-catenin signaling pathway has been reported to play an important role in liver fibrosis. This study was designed to investigate whether mesoderm-specific transcript homologue (Mest), a strong negative regulator of Wnt/β-catenin signaling, could inhibit liver fibrosis. Methods pcDNA-Mest was transfected into hepatic stellate cells (HSCs) and rats. Rats were randomly divided into four groups: normal group (normal saline), treatment group (pcDNA-Mest+CCl4), control group (pcDNA-neo+CCl4), and model group (normal saline+CCl4). Changes in liver pathology were evaluated by hematoxylin and eosin and Masson's trichrome staining. The levels of alanine transaminase, aspartate transaminase, lactic dehygrogenase, hyaluronic acid, and laminin in the serum and hydroxyproline in the liver were detected by biochemical examination and radioimmunoassay, respectively. The expression and distribution of β-catenin, α-smooth muscle actin (α-SMA), Smad3, and tissue inhibitor of metalloproteinase type I were determined, and the viability of the HSCs was tested. Results Our data demonstrate that Mest alleviated CCl4-induced collagen deposition in liver tissue and improved the condition of the liver in rats. Mest also significantly reduced the expression and distribution of β-catenin, α-SMA and Smad3 both in vivo and in vitro, in addition to the viability of HSCs in vitro. Conclusions We found that Mest attenuates liver fibrosis by repressing β-catenin expression, which provides a new therapeutic approach for treating liver fibrosis.
Collapse
Affiliation(s)
- Wenting Li
- Department of Infectious Disease, Anhui Provincial Hospital, Hefei, China
| | - Chuanlong Zhu
- Department of Infectious Disease, Anhui Provincial Hospital, Hefei, China
| | - Yi Li
- Department of Infectious Disease, Anhui Provincial Hospital, Hefei, China
| | - Quan Wu
- Central Laboratory, Anhui Provincial Hospital, Hefei, China
| | - Rentao Gao
- Department of Infectious Disease, Anhui Provincial Hospital, Hefei, China
| |
Collapse
|
13
|
Logan GJ, de Alencastro G, Alexander IE, Yeoh GC. Exploiting the unique regenerative capacity of the liver to underpin cell and gene therapy strategies for genetic and acquired liver disease. Int J Biochem Cell Biol 2014; 56:141-52. [PMID: 25449261 DOI: 10.1016/j.biocel.2014.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 02/06/2023]
Abstract
The number of genetic or acquired diseases of the liver treatable by organ transplantation is ever-increasing as transplantation techniques improve placing additional demands on an already limited organ supply. While cell and gene therapies are distinctly different modalities, they offer a synergistic alternative to organ transplant due to distinct architectural and physiological properties of the liver. The hepatic blood supply and fenestrated endothelial system affords relatively facile accessibility for cell and/or gene delivery. More importantly, however, the remarkable capacity of hepatocytes to proliferate and repopulate the liver creates opportunities for new treatments based on emerging technologies. This review will summarise current understanding of liver regeneration, describe clinical and experimental cell and gene therapeutic modalities and discuss critical challenges to translate these new technologies to wider clinical utility. This article is part of a Directed Issue entitled: "Regenerative Medicine: the challenge of translation".
Collapse
Affiliation(s)
- Grant J Logan
- Gene Therapy Research Unit of The Children's Medical Research Institute and The Children's Hospital at Westmead, Australia
| | - Gustavo de Alencastro
- Gene Therapy Research Unit of The Children's Medical Research Institute and The Children's Hospital at Westmead, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit of The Children's Medical Research Institute and The Children's Hospital at Westmead, Australia; University of Sydney Discipline of Paediatrics and Child Health, Westmead, NSW 2145, Australia
| | - George C Yeoh
- The Centre for Medical Research, Harry Perkins Institute of Medical Research, Crawley, WA 6009, Australia.
| |
Collapse
|
14
|
Wang YR, Zhang H, Sun H, Liu P. PKCα signaling pathway involves in TNF-α-induced IP3R1 expression in human mesangial cells. World J Emerg Med 2014; 3:282-6. [PMID: 25215078 DOI: 10.5847/wjem.j.issn.1920-8642.2012.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/25/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND This study aimed to explore the effects of TNF-α on the expression of IP3R1 mRNA and protein in human mesangial cells (HMCs), and to elucidate the mechanism of TNF-α relating to IP3R1 expression in the occurrence of hepatorenal syndrome (HRS). METHODS HMCs were stimulated by tumor (TNF-α) with 100 ng/mL for different hours (2, 4, 8, and 24 hours). The expression changes of IP3R1 mRNA and protein were detected by quantitative real-time polymerase chain reaction and immunoblotting. Several inhibitors including D609, U73122, PP1, safingol, rottlerin and non-radioactive protein kinase C (PKC) were used to examine the mechanism of signal transduction of TNF-α-regulated IP3R1 in HMCs. RESULTS The levels of IP3R1 mRNA at 2 hours after TNF-α exposure were significantly enhanced and peaked at 8 hours in HMCs (P<0.01), then descended at 24 hours (P<0.01). The levels of IP3R1 protein at 4 hours after TNF-α exposure were obviously increased and peaked at 24 hours after TNF-α exposure (P<0.01). Compared to the control group, safingol (PKCα inhibitor) and D609 (phosphatidylcholine-specific phospholipase C inhibitor) significantly blocked the TNF-αinduced expression of IP3R1 mRNA (3.30±0.81 vs. 1.95±0.13, P<0.05; 2.10±0.49, P<0.01) and IP3R1 protein (3.09±0.13 vs. 1.86+0.39, P<0.01; 1.98±0.02, P<0.01). TNF-α promoted PKCα activation with maximal PKCα phosphorylation that occurred 8 hours after stimulation measured by non-radioactive PKC assay, and the effect was markedly attenuated by pretreatment with D609 or safingol. CONCLUSION TNF-α increased the expression of IP3R1 and this was mediated, at least in part, through the PC-PLC/PKCα signaling pathways in HMCs.
Collapse
Affiliation(s)
- Yu-Rong Wang
- Department of Digestion, Jiujiang First People's Hospital, Jiujiang 332000, China
| | - Huan Zhang
- Department of Digestion, Jiujiang First People's Hospital, Jiujiang 332000, China
| | - Hui Sun
- Department of Digestion, Jiujiang First People's Hospital, Jiujiang 332000, China
| | - Pei Liu
- Department of Digestion, Jiujiang First People's Hospital, Jiujiang 332000, China
| |
Collapse
|
15
|
González-Rodríguez Á, Reibert B, Amann T, Constien R, Rondinone CM, Valverde ÁM. In vivo siRNA delivery of Keap1 modulates death and survival signaling pathways and attenuates concanavalin-A-induced acute liver injury in mice. Dis Model Mech 2014; 7:1093-100. [PMID: 24997191 PMCID: PMC4142729 DOI: 10.1242/dmm.015537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress contributes to the progression of acute liver failure (ALF). Transcription factor nuclear factor-erythroid 2-related factor (Nrf2) serves as an endogenous regulator by which cells combat oxidative stress. We have investigated liver damage and the balance between death and survival signaling pathways in concanavalin A (ConA)-mediated ALF using in vivo siRNA delivery targeting Keap1 in hepatocytes. For that goal, mice were injected with Keap1- or luciferase-siRNA-containing liposomes via the tail vein. After 48 hours, ALF was induced by ConA. Liver histology, pro-inflammatory mediators, antioxidant responses, cellular death, and stress and survival signaling were assessed. Keap1 mRNA and protein levels significantly decreased in livers of Keap1-siRNA-injected mice. In these animals, histological liver damage was less evident than in control mice when challenged with ConA. Likewise, markers of cellular death (FasL and caspases 8, 3 and 1) decreased at 4 and 8 hours post-injection. Nuclear Nrf2 and its target, hemoxygenase 1 (HO1), were elevated in Keap1-siRNA-injected mice compared with control animals, resulting in reduced oxidative stress in the liver. Similarly, mRNA levels of pro-inflammatory cytokines were reduced in livers from Keap1-siRNA-injected mice. At the molecular level, activation of c-jun (NH2) terminal kinase (JNK) was ameliorated, whereas the insulin-like growth factor I receptor (IGFIR) survival pathway was maintained upon ConA injection in Keap1-siRNA-treated mice. In conclusion, our results have revealed a potential therapeutic use of in vivo siRNA technology targeted to Keap1 to combat oxidative stress by modulating Nrf2-mediated antioxidant responses and IGFIR survival signaling during the progression of ALF.
Collapse
Affiliation(s)
- Águeda González-Rodríguez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain Instituto de Investigaciones Biomédicas "Alberto Sols" (Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid), 28029 Madrid, Spain
| | | | | | | | | | - Ángela M Valverde
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| |
Collapse
|
16
|
He Y, Long J, Zhong W, Fu Y, Li Y, Lin S. Sustained endoplasmic reticulum stress inhibits hepatocyte proliferation via downregulation of c-Met expression. Mol Cell Biochem 2014; 389:151-8. [PMID: 24390087 DOI: 10.1007/s11010-013-1936-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/18/2013] [Indexed: 12/25/2022]
Abstract
The molecular mechanisms of impaired liver regeneration in several liver diseases remain poorly understood. Endoplasmic reticulum (ER) stress has been observed in a variety of liver diseases. The aims of this study were to explore the impacts of ER stress on hepatocyte growth factor (HGF)-induced proliferation and c-Met expression in human hepatocyte L02 cells. Human hepatocyte L02 cells were incubated with thapsigargin (TG) to induce ER stress. 4-Phenylbutyric acid (PBA) was used to rescue ER stress. Activation of glucose-regulated protein 78, phosphorylation of PKR-like ER kinase and eukaryotic translation initiation factor-2α, and the expression of c-Met were determined by western blotting. The expression of c-Met mRNA was observed by reverse transcription polymerase chain reaction. L02 cell proliferation was determined by the MTS assay. L02 cell proliferation was significantly impaired in TG-treated L02 cells from 24 to 48 h, while PBA partly restored the proliferation of L02 cells. In addition, TG treatment significantly decreased the sensitivity of L02 cells to HGF-induced proliferation. PBA partly resumed the sensitivity of L02 cells to HGF-induced proliferation. The expression of c-Met protein in L02 cells was downregulated from 6 h after TG treatment, and PBA partly restored c-Met expression inhibited by TG. The expression of c-Met mRNA was also significantly downregulated from 24 to 48 h after TG treatment. Our results strongly suggest that sustained ER stress inhibits hepatocyte proliferation via downregulation of both c-Met mRNA and protein expression in human hepatocyte L02 cells.
Collapse
Affiliation(s)
- Yihuai He
- Department of Infectious Diseases, Zunyi Medical College, 201 Dalian Street, Zunyi, 563003, Guizhou, China
| | | | | | | | | | | |
Collapse
|
17
|
Current world literature. Curr Opin Pediatr 2012; 24:770-9. [PMID: 23146873 DOI: 10.1097/mop.0b013e32835af8de] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|