1
|
Xin W, Tu S, Yi S, Xiong Y, Fang K, Sun G, Xiao W. Clinical significance of tumor suppressor genes methylation in circulating tumor DNA of patients with pancreatic cancer. Gene 2024; 897:148078. [PMID: 38097094 DOI: 10.1016/j.gene.2023.148078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) has emerged as a potential diagnostic and prognostic biomarker in various tumors. However, the role of tumor suppressor genes (TSGs) methylation in ctDNA of patients with pancreatic cancer (PC) remains largely unclear. METHODS Patients with PC (n = 43), pancreatic benign diseases (n = 39), and healthy controls (n = 20) were enrolled in the study. Quantitative analysis of methylation pattern of five candidate TSGs including NPTX2, RASSF1A, EYA2, p16, and ppENK in ctDNA was performed by next generation sequencing (NGS). The diagnostic performances of these 5-TSGs methylation were assessed by the operating characteristic (ROC) curve and clinicopathological features correlation analysis. Meanwhile, the changes in methylation levels of these 5-TSGs on the 7th postoperative day were evaluated in 23 PC patients who underwent radical resection. RESULTS The methylation levels of RASSF1A, EYA2, ppENK and p16 genes in patients with PC were significantly higher than those in healthy controls. EYA2, p16 and ppENK genes showed significantly hypermethylation in PC than those in pancreatic benign diseases. NPTX2, RASSF1A, EYA2, p16 and ppENK genes showed significantly hypermethylation in pancreatic benign diseases than those in healthy controls (P < 0.05). The methylation levels of these 5 candidate TSGs were not correlated with the tumor size, nerve invasion, lymph node metastasis and TNM stage of PC. The AUC of these biomarkers for diagnosis of PC ranged from 0.65 to 0.96. The AUC values of these methylated genes and CpG sites for differentiating malignant and benign pancreatic diseases were ranging from 0.68 to 0.92. Combined the hypermethylated genes improved the detective ability of PC than single gene. The methylation levels of NPTX2, EYA2 and ppENK genes were significantly decreased after radical resection of PC. CONCLUSION Quantitative analysis of methylation pattern of NPTX2, RASSF1A, EYA2, p16 and ppENK in ctDNA by NGS could be a valuable non-invasive tool for detection and monitoring of PC.
Collapse
Affiliation(s)
- WanPeng Xin
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Shuju Tu
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Siqing Yi
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Yuanpeng Xiong
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Kang Fang
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Gen Sun
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Weidong Xiao
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China; Institute of Digestive Surgery, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Kondo K, Muguruma K, Soejima S, Takai C, Kenzaki K, Kawakita N, Toba H, Takizawa H. Aberrant DNA Methylation of NPTX2 as an Indicator of Malignant Behavior in Thymic Epithelial Tumors. Cancers (Basel) 2024; 16:329. [PMID: 38254821 PMCID: PMC10813937 DOI: 10.3390/cancers16020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Thymic epithelial tumors (TET) consist of thymomas, thymic carcinoma (TC), and neuroendocrine tumors of the thymus (NECTT). Genetic and epigenetic alterations in TET have been the focus of recent research. In the present study, genome-wide screening was performed on aberrantly methylated CpG islands in TET, and this identified neuronal pentraxin 2 (NTPX2) as a significantly hypermethylated CpG island in TC relative to thymomas. NPTX2 is released from pre-synaptic cells in response to neuronal activity/seizure, and plays a role in host immunity and acute inflammation. TET samples were obtained from 38 thymomas, 25 TC, and 6 NECTT. The DNA methylation, mRNA, and protein expression levels of NPTX2 were examined. The DNA methylation rate of the NPTX2 gene was significantly higher in TC than in the normal thymus and thymomas, except B3. The mRNA expression level of NPTX2 was lower in TC than in the normal thymus. An inverse relationship was observed between mRNA expression levels and methylation levels. Relapse-free survival was shorter in patients with high NPTX2 DNA methylation levels than in those with low DNA methylation levels. NECTT showed very high mRNA and protein expression levels and low DNA methylation levels of NPTX2. NPTX2 may function as a tumor suppressor in TC, and have an oncogenic function in NECTT.
Collapse
Affiliation(s)
- Kazuya Kondo
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8509, Japan; (K.M.); (S.S.); (C.T.)
| | - Kyoka Muguruma
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8509, Japan; (K.M.); (S.S.); (C.T.)
| | - Shiho Soejima
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8509, Japan; (K.M.); (S.S.); (C.T.)
| | - Chikako Takai
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8509, Japan; (K.M.); (S.S.); (C.T.)
| | - Koichiro Kenzaki
- Department of Chest and Breast Surgical Oncology, Takamatsu Red Cross Hospital, Takamatsu 760-0017, Japan;
| | - Naoya Kawakita
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (N.K.); (H.T.); (H.T.)
| | - Hiroaki Toba
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (N.K.); (H.T.); (H.T.)
| | - Hiromitsu Takizawa
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (N.K.); (H.T.); (H.T.)
| |
Collapse
|
3
|
Systematic review and meta-analysis: Diagnostic performance of DNA alterations in pancreatic juice for the detection of pancreatic cancer. Pancreatology 2022; 22:973-986. [PMID: 35864067 DOI: 10.1016/j.pan.2022.06.260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Pancreatic cancer has a dismal prognosis. So far, imaging has been proven incapable of establishing an early enough diagnosis. Thus, biomarkers are urgently needed for early detection and improved survival. Our aim was to evaluate the pooled diagnostic performance of DNA alterations in pancreatic juice. METHODS A systematic literature search was performed in EMBASE, MEDLINE Ovid, Cochrane CENTRAL and Web of Science for studies concerning the diagnostic performance of DNA alterations in pancreatic juice to differentiate patients with high-grade dysplasia or pancreatic cancer from controls. Study quality was assessed using QUADAS-2. The pooled prevalence, sensitivity, specificity and diagnostic odds ratio were calculated. RESULTS Studies mostly concerned cell-free DNA mutations (32 studies: 939 cases, 1678 controls) and methylation patterns (14 studies: 579 cases, 467 controls). KRAS, TP53, CDKN2A, GNAS and SMAD4 mutations were evaluated most. Of these, TP53 had the highest diagnostic performance with a pooled sensitivity of 42% (95% CI: 31-54%), specificity of 98% (95%-CI: 92%-100%) and diagnostic odds ratio of 36 (95% CI: 9-133). Of DNA methylation patterns, hypermethylation of CDKN2A, NPTX2 and ppENK were studied most. Hypermethylation of NPTX2 performed best with a sensitivity of 39-70% and specificity of 94-100% for distinguishing pancreatic cancer from controls. CONCLUSIONS This meta-analysis shows that, in pancreatic juice, the presence of distinct DNA mutations (TP53, SMAD4 or CDKN2A) and NPTX2 hypermethylation have a high specificity (close to 100%) for the presence of high-grade dysplasia or pancreatic cancer. However, the sensitivity of these DNA alterations is poor to moderate, yet may increase if they are combined in a panel.
Collapse
|
4
|
Xu G, Fan L, Zhao S, OuYang C. Neuronal pentraxin II (NPTX2) hypermethylation promotes cell proliferation but inhibits cell cycle arrest and apoptosis in gastric cancer cells by suppressing the p53 signaling pathway. Bioengineered 2021; 12:1311-1323. [PMID: 33896384 PMCID: PMC8806217 DOI: 10.1080/21655979.2021.1915658] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is a considerable health burden worldwide. DNA methylation, a major epigenetic phenomenon, is closely related to the pathogenesis of cancer. Neuronal pentraxin II (NPTX2) has been found to be hypermethylated in several cancers such as glioblastoma and pancreatic cancer. However, the roles of NPTX2 in gastric cancer have not been reported. To explore this issue, NPTX2 expression in gastric cancer cells was assessed by western blot and quantitative real-time polymerase chain reaction (qRT-PCR). The methylation analysis of NPTX2 was performed by qRT-PCR as well as methylation-specific PCR (MS-PCR). The effects of NPTX2 on gastric cancer cell proliferation, apoptosis and cell cycle were detected by colony formation, CCK-8 and flow cytometry assays, respectively. The interaction of NPTX2 with the p53 signaling pathway was evaluated by western blot. Our study found the down-regulated expression of NPTX2 in gastric cancer cells compared with human gastric mucosal cells. In addition, the hypermethylation of NPTX2 was observed in gastric cancer cells, which was correlated with the low expression of NPTX2. Moreover, NPTX2 inhibited gastric cancer cell proliferation, inhibited apoptosis and induced cell cycle arrest. Furthermore, NPTX2 enhanced the protein expression of p53, p21 and PTEN to activate the p53 signaling pathway. Therefore, NPTX2 hypermethylation caused the downregulation of NPTX2 expression, which could promote cell proliferation, inhibit apoptosis and cause cell cycle arrest in gastric cancer cells by suppressing the p53 signaling pathway. Therefore, NPTX2 may be crucial for the progression of gastric cancer.
Collapse
Affiliation(s)
- Guofeng Xu
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, China
| | - Linfeng Fan
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, China
| | - Shufeng Zhao
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, China
| | - Canhui OuYang
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, China
| |
Collapse
|
5
|
Wang Z, Wang X, Zou H, Dai Z, Feng S, Zhang M, Xiao G, Liu Z, Cheng Q. The Basic Characteristics of the Pentraxin Family and Their Functions in Tumor Progression. Front Immunol 2020; 11:1757. [PMID: 33013829 PMCID: PMC7461825 DOI: 10.3389/fimmu.2020.01757] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/30/2020] [Indexed: 02/05/2023] Open
Abstract
The pentraxin is a superfamily of proteins with the same domain known as the pentraxin domain at C-terminal. This family has two subgroups, namely; short pentraxins (C-reactive protein and serum amyloid P component) and long pentraxins (neuronal pentraxin 1, neuronal pentraxin 2, neuronal pentraxin receptor, pentraxin 3 and pentraxin 4). Each group shares a similar structure with the pentameric complexes arranged in a discoid shape. Previous studies revealed the functions of different pentraxin family members. Most of them are associated with human innate immunity. Inflammation has commonly been associated with tumor progression, implying that the pentraxin family might also participate in tumor progression. Therefore, we reviewed the basic characteristics and functions of the pentraxin family and their role in tumor progression.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Xing Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hecun Zou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Songshan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Mingyu Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Singh N, Rashid S, Rashid S, Dash NR, Gupta S, Saraya A. Clinical significance of promoter methylation status of tumor suppressor genes in circulating DNA of pancreatic cancer patients. J Cancer Res Clin Oncol 2020; 146:897-907. [PMID: 32146565 DOI: 10.1007/s00432-020-03169-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/27/2020] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive cancer. There are various sub-cellular events (both genetic and epigenetic) that get dysregulated leading to tumorigenesis. Methylation in promoters of tumor suppressor genes is one of these epigenetic phenomena contributing to the pathogenesis of cancer. Genes analyzed for promoter methylation status in this study namely SPARC (Secreted Protein Acidic and Rich in Cysteine, UCHL1 (ubiquitin carboxy-terminal hydrolase L1), NPTX2 (neuronal pentraxin 2), PENK (proenkephalin) had been studied in pancreatic cancer, but there is a need to check methylation in these genes as circulatory non-invasive markers. This study analyzed the absolute quantification of methylation levels of SPARC, UCHL1, PENK, and NPTX2 genes promoters in PDAC patients as well as in chronic pancreatitis (CP) patients and healthy subjects (HC) and evaluated its clinical significance in PDAC. MATERIALS AND METHODS The study included 65 PDAC patients, 25 CP patients, and 25 healthy controls. DNA was extracted from their plasma samples and subsequently given bisulfite treatment. Absolute quantization of methylated and unmethylated copies of gene promoters of all the four genes was performed using real-time PCR (SYBR green) by the standard curve method. Methylation levels were expressed as methylation index (MI) for each gene in each patient. MI was calculated from absolute copy numbers as follows: MI-methylated copy number/methylated copy number + unmethylated copy number). These indices were used to compare gene methylation levels within different groups and to correlate with clinicopathological features and survival of pancreatic cancer patients. An appropriate statistical analysis was applied. RESULTS Methylation indices for all the four genes in PDAC cases were found to be significantly higher as compared to that in healthy individuals. SPARC MI values were found to differentiate early-stage PDAC patients from CP patients. PDAC patients with the metastasized disease and stage IV disease were found to have high MI for the SPARC gene as well as for the NPTX2 gene, while a higher UCHL1 methylation index was found to correlate with an advanced stage of the disease. Higher MI values for SPARC and NPTX2 genes were found to associate with poor survival in patients with PDAC. CONCLUSION Methylation load in the form of MI for each of the four genes assessed in plasma may emerge as a non-invasive biomarker to differentiate pancreatic cancer from healthy individuals. But only SPARC and NPTX2 hypermethylation were able to distinguish pancreatic cancer from chronic pancreatitis. Association of aberrant methylation in SPARC and NPTX2 gene with metastasis and poor survival of patients suggest the role of methylation in these genes as prognostic markers.
Collapse
Affiliation(s)
- Nidhi Singh
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sumaira Rashid
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Safoora Rashid
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Nihar Ranjan Dash
- Department of Gastrointestinal Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Surabhi Gupta
- Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, India
| | - Anoop Saraya
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
7
|
Zhang W, Shang S, Yang Y, Lu P, Wang T, Cui X, Tang X. Identification of DNA methylation-driven genes by integrative analysis of DNA methylation and transcriptome data in pancreatic adenocarcinoma. Exp Ther Med 2020; 19:2963-2972. [PMID: 32256782 PMCID: PMC7086284 DOI: 10.3892/etm.2020.8554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a painful and fatal disease that undoubtedly remains a health care priority and offers significant therapeutic challenges. The significance of epigenetic modifications, including DNA methylation in tumor development, has gained the attention of researchers. Identifying DNA methylation-driven genes and investigating the mechanisms underlying the tumorigenesis of PAAD are of substantial importance for developing methods of physiological evaluation, treatment planning and prognostic prediction for PAAD. In the present study, a comprehensive analysis of DNA methylation and gene expression data from 188 clinical samples was performed to identify DNA methylation-driven genes in PAAD. In addition, the diagnostic and prognostic value of DNA methylation-driven genes was evaluated using receiver operating characteristic curve, survival and recurrence analyses. A total of 7 DNA methylation-driven genes, namely zinc finger protein 208 (ZNF208), eomesodermin (EOMES), prostaglandin D2 receptor (PTGDR), chromosome 12 open reading frame 42 (C12orf42), integrin subunit α 4 (ITGA4), dedicator of cytokinesis 8 and protein phosphatase 1 regulatory inhibitor subunit 14D (PPP1R14D), were identified. All of them may be used to diagnose PAAD with excellent specificity and sensitivity (area under curve, >0.8). Of the 7 DNA methylation-driven genes, 6 were significantly associated with overall survival (OS) and recurrence-free survival (RFS) P<0.05). Among them, ZNF208, EOMES, PTGDR, C12orf42 and ITGA4 were significantly negatively associated with the OS rate and positively associated with the recurrence rate, while PPP1R14D was significantly positively associated with the OS rate and negatively associated with the recurrence rate. The present study provides novel insight into the epigenetic alterations associated with the occurrence and progression of PAAD, thereby increasing the mechanistic understanding of this disease, offering potential novel molecular biomarkers and contributing to the development of therapeutic targets for PAAD.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China
| | - Shuai Shang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China
| | - Yingying Yang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China
| | - Peiyao Lu
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China
| | - Teng Wang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China
| | - Xinyi Cui
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China
| | - Xuexi Tang
- Department of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, P.R. China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory of Oceanology for Marine Science and Technology, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
8
|
Liu B, Pilarsky C. Analysis of DNA Hypermethylation in Pancreatic Cancer Using Methylation-Specific PCR and Bisulfite Sequencing. Methods Mol Biol 2019; 1856:269-282. [PMID: 30178258 DOI: 10.1007/978-1-4939-8751-1_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive tumor and the fourth common cause of cancer death in the Western world. The lack of effective therapeutic strategies is attributed to the late diagnosis of this disease. Methylation markers could improve early detection and help in the surveillance of PDAC after treatment. Analysis of hypermethylation in the tumor tissue and tumor-derived exosomes might help to identify new therapeutic strategies and aid in the understanding of the pathophysiological changes occurring in pancreatic cancer. There are several methods for the detection of methylation events. Whereas methylation-specific PCR (MSP-PCR) is the method of choice, the cost reductions in DNA sequencing enables researchers to add bisulfite sequencing (BSS) to their repertoire if a small number of genes will be tested in a larger set of patients' samples. During the last years, several techniques to isolate and analyze DNA methylation have been proposed, but DNA modification using sodium bisulfite is still the gold standard.
Collapse
Affiliation(s)
- Bin Liu
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen, Erlangen, Germany
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen, Erlangen, Germany.
| |
Collapse
|
9
|
Xiao MF, Xu D, Craig MT, Pelkey KA, Chien CC, Shi Y, Zhang J, Resnick S, Pletnikova O, Salmon D, Brewer J, Edland S, Wegiel J, Tycko B, Savonenko A, Reeves RH, Troncoso JC, McBain CJ, Galasko D, Worley PF. NPTX2 and cognitive dysfunction in Alzheimer's Disease. eLife 2017; 6. [PMID: 28440221 PMCID: PMC5404919 DOI: 10.7554/elife.23798] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/15/2017] [Indexed: 12/14/2022] Open
Abstract
Memory loss in Alzheimer’s disease (AD) is attributed to pervasive weakening and loss of synapses. Here, we present findings supporting a special role for excitatory synapses connecting pyramidal neurons of the hippocampus and cortex with fast-spiking parvalbumin (PV) interneurons that control network excitability and rhythmicity. Excitatory synapses on PV interneurons are dependent on the AMPA receptor subunit GluA4, which is regulated by presynaptic expression of the synaptogenic immediate early gene NPTX2 by pyramidal neurons. In a mouse model of AD amyloidosis, Nptx2-/- results in reduced GluA4 expression, disrupted rhythmicity, and increased pyramidal neuron excitability. Postmortem human AD cortex shows profound reductions of NPTX2 and coordinate reductions of GluA4. NPTX2 in human CSF is reduced in subjects with AD and shows robust correlations with cognitive performance and hippocampal volume. These findings implicate failure of adaptive control of pyramidal neuron-PV circuits as a pathophysiological mechanism contributing to cognitive failure in AD. DOI:http://dx.doi.org/10.7554/eLife.23798.001
Collapse
Affiliation(s)
- Mei-Fang Xiao
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States.,Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Desheng Xu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Michael T Craig
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Kenneth A Pelkey
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Chun-Che Chien
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Yang Shi
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Juhong Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Susan Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, United States
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - David Salmon
- Department of Neurosciences, University of California San Diego Medical Center, San Diego, United States.,Shiley-Marcos Alzheimer's Disease Research Center, University of California San Diego Medical Center, San Diego, United States
| | - James Brewer
- Department of Neurosciences, University of California San Diego Medical Center, San Diego, United States.,Shiley-Marcos Alzheimer's Disease Research Center, University of California San Diego Medical Center, San Diego, United States
| | - Steven Edland
- Shiley-Marcos Alzheimer's Disease Research Center, University of California San Diego Medical Center, San Diego, United States.,Division of Biostatistics and Bioinformatics, University of California San Diego, San Diego, United States
| | - Jerzy Wegiel
- Institute for Basic Research, New York City, United States
| | - Benjamin Tycko
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, Columbia University, New York City, United States
| | - Alena Savonenko
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, United States.,Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Chris J McBain
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, Bethesda, United States
| | - Douglas Galasko
- Department of Neurosciences, University of California San Diego Medical Center, San Diego, United States.,Shiley-Marcos Alzheimer's Disease Research Center, University of California San Diego Medical Center, San Diego, United States
| | - Paul F Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
10
|
Schrödter S, Braun M, Syring I, Klümper N, Deng M, Schmidt D, Perner S, Müller SC, Ellinger J. Identification of the dopamine transporter SLC6A3 as a biomarker for patients with renal cell carcinoma. Mol Cancer 2016; 15:10. [PMID: 26831905 PMCID: PMC4736613 DOI: 10.1186/s12943-016-0495-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/27/2016] [Indexed: 01/23/2023] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is among the most common human malignancies. Methods In order to provide better understanding of the molecular biology of ccRCC and to identify potential diagnostic/prognostic biomarker and therapeutic targets, we utilized a microarray to profile mRNA expression of corresponding normal and malignant renal tissues. Real-time PCR, Western Blot and immunohistochemistry were applied to study the expression of candidate biomarkers. ccRCC cell lines were treated with sertraline to inhibit the dopamine transporter SLC6A3. Results Differential expression of fourteen mRNAs, yet not studied in ccRCC in depth, was confirmed using qPCR (upregulation: SLC6A3, NPTX2, TNFAIP6, NDUFA4L2, ENPP3, FABP6, SPINK13; downregulation: FXYD4, SLC12A1, KNG1, NPHS2, SLC13A3, GCGR, PLG). Up-/downregulation was also confirmed for FXYD4, KNG1, NPTX2 and SLC12A1 by Western Blot on the protein level. In contrast to the mRNA expression, protein expression of the dopamine transporter SLC6A3 was lower in ccRCC compared to normal renal tissue. Immunohistochemistry indicated that this decrease was due to higher concentrations of SLC6A3 in the proximal tubules. Immunohistochemical analyses further demonstrated that high SLC6A3 expression in ccRCC tissue was correlated with a shorter period of recurrence-free survival following surgery. Treatment of ccRCC cells with the SLC6A3 inhibitor sertraline induced dose-dependent cell-death. Conclusion Our study identified several novel biomarkers with diagnostic potential and further investigations on sertraline as therapeutic agent in ccRCC patients are warranted. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0495-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah Schrödter
- Department of Urology, University Hospital Bonn, Bonn, Germany.
| | - Martin Braun
- Section for Prostate Cancer Research, Institute of Pathology, Center for Integrated Oncology, University Hospital Bonn, Cologne/Bonn, Germany.
| | - Isabella Syring
- Department of Urology, University Hospital Bonn, Bonn, Germany. .,Section for Prostate Cancer Research, Institute of Pathology, Center for Integrated Oncology, University Hospital Bonn, Cologne/Bonn, Germany.
| | - Niklas Klümper
- Section for Prostate Cancer Research, Institute of Pathology, Center for Integrated Oncology, University Hospital Bonn, Cologne/Bonn, Germany.
| | - Mario Deng
- Section for Prostate Cancer Research, Institute of Pathology, Center for Integrated Oncology, University Hospital Bonn, Cologne/Bonn, Germany. .,Klinik und Poliklinik für Urologie und Kinderurologie, Universitätsklinikum Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany.
| | - Doris Schmidt
- Department of Urology, University Hospital Bonn, Bonn, Germany.
| | - Sven Perner
- Section for Prostate Cancer Research, Institute of Pathology, Center for Integrated Oncology, University Hospital Bonn, Cologne/Bonn, Germany.
| | - Stefan C Müller
- Department of Urology, University Hospital Bonn, Bonn, Germany.
| | - Jörg Ellinger
- Department of Urology, University Hospital Bonn, Bonn, Germany. .,Klinik und Poliklinik für Urologie und Kinderurologie, Universitätsklinikum Bonn, Sigmund-Freud-Strasse 25, 53105, Bonn, Germany.
| |
Collapse
|
11
|
Singh R, Lillard JW, Singh S. Epigenetic Changes and Potential Targets in Pancreatic Cancer. EPIGENETIC ADVANCEMENTS IN CANCER 2016:27-63. [DOI: 10.1007/978-3-319-24951-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Soares Bispo Santos Silva D, Antunes J, Balamurugan K, Duncan G, Sampaio Alho C, McCord B. Evaluation of DNA methylation markers and their potential to predict human aging. Electrophoresis 2015; 36:1775-80. [PMID: 26010003 DOI: 10.1002/elps.201500137] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 11/11/2022]
Abstract
We present epigenetic methylation data for two genetic loci, GRIA2, and NPTX2, which were tested for prediction of age from different donors of biofluids. We analyzed 44 saliva samples and 23 blood samples from volunteers with ages ranging from 5 to 72 years. DNA was extracted and bisulfite modified using commercial kits. Specific primers were used for amplification and methylation profiles were determined by pyrosequencing. Methylation data from both markers and their relationship with age were determined using linear regression analysis, which indicates a positive correlation between methylation and age. Older individuals tend to have increased methylation in both markers compared to younger individuals and this trend was more pronounced in the GRIA2 locus when compared to NPTX2. The epigenetic predicted age, calculated using a GRIA2 regression analysis model, was strongly correlated to chronological age (R(2) = 0.801), with an average difference of 6.9 years between estimated and observed ages. When using a NPTX2 regression model, we observed a lower correlation between predicted and chronological age (R(2) = 0.654), with an average difference of 9.2 years. These data indicate these loci can be used as a novel tool for age prediction with potential applications in many areas, including clinical and forensic investigations.
Collapse
Affiliation(s)
- Deborah Soares Bispo Santos Silva
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.,Faculty of Biosciences, Laboratory of Human and Molecular Genetics, PUCRS, Porto Alegre, Brazil
| | - Joana Antunes
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | | | - George Duncan
- DNA Laboratory, Broward County Sheriff's Office, Fort Lauderdale, FL, USA
| | - Clarice Sampaio Alho
- Faculty of Biosciences, Laboratory of Human and Molecular Genetics, PUCRS, Porto Alegre, Brazil
| | - Bruce McCord
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| |
Collapse
|
13
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive tumor and the fourth common cause of cancer death in the Western world. The lack of effective therapeutic strategies is due to the late diagnosis of this disease. Methylation markers could improve early detection and help in the surveillance of PDAC after treatment. Analysis of hypermethylation in the tumor tissue might help to identify new therapeutic strategies and aid in the understanding of the pathophysiological changes occurring in pancreatic cancer. There are several methods for the detection of methylated events, but methylation-specific PCR (MSP-PCR) is the method of choice if a small number of genes will be tested in a larger set of patients samples. After isolation of the DNA by standard procedure, the DNA is then modified using sodium bisulfide.
Collapse
Affiliation(s)
- Christian Pilarsky
- Department of Surgery, Medizinische Fakultät Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Germany,
| | | |
Collapse
|
14
|
Abstract
Pancreatic cancer is one of the worst prognostic cancers because of the late diagnosis and the absence of effective treatment. Within all subtypes of this disease, ductal adenocarcinoma has the shortest survival time. In recent years, global genomics profiling allowed the identification of hundreds of genes that are perturbed in pancreatic cancer. The integration of different omics sources in the study of pancreatic cancer has revealed several molecular mechanisms, indicating the complex history of its development. However, validation of these genes as biomarkers for early diagnosis, prognosis or treatment efficacy is still incomplete but should lead to new approaches for the treatment of the disease in the future.
Collapse
Affiliation(s)
- Christian Pilarsky
- Department of Vascular-, Thoracic and Visceral Surgery, University Hospital Dresden, Technische Universit?t Dresden, Fetscherstr. 74, Dresden 01307, Germany.
| | | |
Collapse
|
15
|
Neureiter D, Jäger T, Ocker M, Kiesslich T. Epigenetics and pancreatic cancer: Pathophysiology and novel treatment aspects. World J Gastroenterol 2014; 20:7830-7848. [PMID: 24976721 PMCID: PMC4069312 DOI: 10.3748/wjg.v20.i24.7830] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/07/2014] [Accepted: 03/13/2014] [Indexed: 02/06/2023] Open
Abstract
An improvement in pancreatic cancer treatment represents an urgent medical goal. Late diagnosis and high intrinsic resistance to conventional chemotherapy has led to a dismal overall prognosis that has remained unchanged during the past decades. Increasing knowledge about the molecular pathogenesis of the disease has shown that genetic alterations, such as mutations of K-ras, and especially epigenetic dysregulation of tumor-associated genes, such as silencing of the tumor suppressor p16ink4a, are hallmarks of pancreatic cancer. Here, we describe genes that are commonly affected by epigenetic dysregulation in pancreatic cancer via DNA methylation, histone acetylation or miRNA (microRNA) expression, and review the implications on pancreatic cancer biology such as epithelial-mesenchymal transition, morphological pattern formation, or cancer stem cell regulation during carcinogenesis from PanIN (pancreatic intraepithelial lesions) to invasive cancer and resistance development. Epigenetic drugs, such as DNA methyltransferases or histone deactylase inhibitors, have shown promising preclinical results in pancreatic cancer and are currently in early phases of clinical development. Combinations of epigenetic drugs with established cytotoxic drugs or targeted therapies are promising approaches to improve the poor response and survival rate of pancreatic cancer patients.
Collapse
|
16
|
Liao GL, Xiao WD. DNA methyltransferases and pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2014; 22:345-349. [DOI: 10.11569/wcjd.v22.i3.345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abnormal methylation of the promoter of suppressor genes plays an important role in the occurrence and development of pancreatic cancer. The degree of methylation is closely related to the activity of DNA methyltransferases. MicroRNAs (miRNAs) are a group of endogenous, small non-coding RNA that can regulate DNA methylation (DNA methylation can also regulate miRNAs) and affect the occurrence of pancreatic cancer. In recent years, demethylation drugs or RNA interference have been widely used to study the pathogenesis and targeted therapy of pancreatic cancer, and are expected to become effective means of treatment for pancreatic cancer. This article will give a review of the functions of DNA methyltransferases and the relationship between DNA methyltransferases and pancreatic cancer.
Collapse
|
17
|
Gnoni A, Licchetta A, Scarpa A, Azzariti A, Brunetti AE, Simone G, Nardulli P, Santini D, Aieta M, Delcuratolo S, Silvestris N. Carcinogenesis of pancreatic adenocarcinoma: precursor lesions. Int J Mol Sci 2013; 14:19731-62. [PMID: 24084722 PMCID: PMC3821583 DOI: 10.3390/ijms141019731] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/04/2013] [Accepted: 09/10/2013] [Indexed: 02/06/2023] Open
Abstract
Pancreatic adenocarcinoma displays a variety of molecular changes that evolve exponentially with time and lead cancer cells not only to survive, but also to invade the surrounding tissues and metastasise to distant sites. These changes include: genetic alterations in oncogenes and cancer suppressor genes; changes in the cell cycle and pathways leading to apoptosis; and also changes in epithelial to mesenchymal transition. The most common alterations involve the epidermal growth factor receptor (EGFR) gene, the HER2 gene, and the K-ras gene. In particular, the loss of function of tumor-suppressor genes has been documented in this tumor, especially in CDKN2a, p53, DPC4 and BRCA2 genes. However, other molecular events involved in pancreatic adenocarcinoma pathogenesis contribute to its development and maintenance, specifically epigenetic events. In fact, key tumor suppressors that are well established to play a role in pancreatic adenocarcinoma may be altered through hypermethylation, and oncogenes can be upregulated secondary to permissive histone modifications. Indeed, factors involved in tumor invasiveness can be aberrantly expressed through dysregulated microRNAs. This review summarizes current knowledge of pancreatic carcinogenesis from its initiation within a normal cell until the time that it has disseminated to distant organs. In this scenario, highlighting these molecular alterations could provide new clinical tools for early diagnosis and new effective therapies for this malignancy.
Collapse
Affiliation(s)
- Antonio Gnoni
- Medical Oncology Unit, Hospital Vito Fazzi, Lecce 73100, Italy; E-Mails: (A.G.); (A.L.)
| | - Antonella Licchetta
- Medical Oncology Unit, Hospital Vito Fazzi, Lecce 73100, Italy; E-Mails: (A.G.); (A.L.)
| | - Aldo Scarpa
- Department of Pathology and Diagnostics, University of Verona, Verona 37121, Italy; E-Mail:
| | - Amalia Azzariti
- Clinical and Preclinical Pharmacology Laboratory, National Cancer Research Centre Istituto Tumori “Giovanni Paolo II”, Bari 70124, Italy; E-Mail:
| | - Anna Elisabetta Brunetti
- Scientific Direction, National Cancer Research Centre Istituto Tumori “Giovanni Paolo II”, Bari 70124, Italy; E-Mail: (A.E.B.); (S.D.)
| | - Gianni Simone
- Histopathology Unit, National Cancer Research Centre Istituto Tumori “Giovanni Paolo II”, Bari 70124, Italy; E-Mail:
| | - Patrizia Nardulli
- Hospital Pharmacy Unit - National Cancer Research Centre Istituto Tumori “Giovanni Paolo II”, Bari 70124, Italy; E-Mail:
| | - Daniele Santini
- Medical Oncology Department, University Campus Bio-Medico, Rome 00199, Italy; E-Mail:
| | - Michele Aieta
- Medical Oncology Unit - CROB-IRCCS, 85028, Rionero in Vulture, Potenza 85100, Italy; E-Mail:
| | - Sabina Delcuratolo
- Scientific Direction, National Cancer Research Centre Istituto Tumori “Giovanni Paolo II”, Bari 70124, Italy; E-Mail: (A.E.B.); (S.D.)
| | - Nicola Silvestris
- Medical Oncology Unit, National Cancer Research Centre Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, Bari 70124, Italy
| |
Collapse
|
18
|
Nica AC, Ongen H, Irminger JC, Bosco D, Berney T, Antonarakis SE, Halban PA, Dermitzakis ET. Cell-type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome. Genome Res 2013; 23:1554-62. [PMID: 23716500 PMCID: PMC3759730 DOI: 10.1101/gr.150706.112] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Elucidating the pathophysiology and molecular attributes of common disorders as well as developing targeted and effective treatments hinges on the study of the relevant cell type and tissues. Pancreatic beta cells within the islets of Langerhans are centrally involved in the pathogenesis of both type 1 and type 2 diabetes. Describing the differentiated state of the human beta cell has been hampered so far by technical (low resolution microarrays) and biological limitations (whole islet preparations rather than isolated beta cells). We circumvent these by deep RNA sequencing of purified beta cells from 11 individuals, presenting here the first characterization of the human beta cell transcriptome. We perform the first comparison of gene expression profiles between beta cells, whole islets, and beta cell depleted islet preparations, revealing thus beta-cell–specific expression and splicing signatures. Further, we demonstrate that genes with consistent increased expression in beta cells have neuronal-like properties, a signal previously hypothesized. Finally, we find evidence for extensive allelic imbalance in expression and uncover genetic regulatory variants (eQTLs) active in beta cells. This first molecular blueprint of the human beta cell offers biological insight into its differentiated function, including expression of key genes associated with both major types of diabetes.
Collapse
Affiliation(s)
- Alexandra C Nica
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|