1
|
Dzinic SH, Mahdi Z, Bernardo MM, Vranic S, Beydoun H, Nahra N, Alijagic A, Harajli D, Pang A, Saliganan DM, Rahman AM, Skenderi F, Hasanbegovic B, Dyson G, Beydoun R, Sheng S. Maspin differential expression patterns as a potential marker for targeted screening of esophageal adenocarcinoma/gastroesophageal junction adenocarcinoma. PLoS One 2019; 14:e0215089. [PMID: 31002675 PMCID: PMC6474598 DOI: 10.1371/journal.pone.0215089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
AIM Barrett's esophagus (BE) is a predisposing factor of esophageal adenocarcinoma/gastroesophageal junction adenocarcinoma (ECA/GEJ Aca). BE patients are stratified and subsequently monitored according to the risk of malignant progression by the combination of endoscopy and biopsy. This study is to evaluate the maspin expression patterns as early diagnostic markers of malignancy in BE patients. MATERIALS AND METHODS Immunohistochemistry (IHC) staining was performed on 62 archival core biopsies from 35 patients, including BE without dysplasia (intestinal metaplasia, IM), BE with low grade dysplasia, BE with high grade dysplasia, carcinoma in situ, and well to poorly differentiated ECA/GEJ Aca (PD-ECA/GEJ Aca). The intensity and the subcellular distribution of immunoreactivity were evaluated microscopically. Statistical analysis was performed using the χ2 and Fisher exact tests. RESULTS The level of epithelial-specific tumor suppressor maspin protein inversely correlated with the progression from IM to PD-ECA/GEJ Aca. Lesions of each pathological grade could be divided into subtypes that exhibited distinct maspin subcellular distribution patterns, including nuclear only (Nuc), combined nuclear and cytoplasmic (Nuc+Cyt), cytoplasmic only (Cyt) and overall negligible (Neg). The Cyt subtype, which was minor in both IM and dysplasia (approximately 10%), was predominant in ECA/GEJ Aca as early as well-differentiated lesions (more than 50%: p = 0.0092). In comparison, nuclear staining of the tumor suppressor TP53 was heterogeneous in dysplasia, and did not correlate with the differentiation grades of ECA/GEJ Aca. CONCLUSION The Cyt subtype of maspin expression pattern in core biopsies of BE patients may serve as a molecular marker for early diagnosis of ECA/GEJ Aca.
Collapse
Affiliation(s)
- Sijana H. Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, United States of America
- Department of Pathology, Wayne State University School of Medicine, Detroit, United States of America
| | - Zaid Mahdi
- Tumor Biology and Microenvironment Program of the Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, United States of America
| | - M. Margarida Bernardo
- Department of Pathology, Wayne State University School of Medicine, Detroit, United States of America
- Tumor Biology and Microenvironment Program of the Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, United States of America
| | - Semir Vranic
- College of Medicine, Qatar University, Doha, Qatar
| | - Haya Beydoun
- Tumor Biology and Microenvironment Program of the Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, United States of America
| | - Nadine Nahra
- Tumor Biology and Microenvironment Program of the Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, United States of America
| | - Amra Alijagic
- Tumor Biology and Microenvironment Program of the Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, United States of America
| | - Deanna Harajli
- Tumor Biology and Microenvironment Program of the Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, United States of America
| | - Aaron Pang
- Tumor Biology and Microenvironment Program of the Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, United States of America
| | - Dan M. Saliganan
- Tumor Biology and Microenvironment Program of the Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, United States of America
| | - Abid M. Rahman
- Tumor Biology and Microenvironment Program of the Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, United States of America
| | - Faruk Skenderi
- Department of Pathology, University Clinical Center, Sarajevo, Bosnia and Herzegovina
| | - Berisa Hasanbegovic
- Department of Oncology, University Clinical Center, Sarajevo, Bosnia and Herzegovina
| | - Gregory Dyson
- Department of Oncology, Wayne State University School of Medicine, Detroit, United States of America
- Department of Pathology, Wayne State University School of Medicine, Detroit, United States of America
| | - Rafic Beydoun
- Tumor Biology and Microenvironment Program of the Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, United States of America
| | - Shijie Sheng
- Department of Oncology, Wayne State University School of Medicine, Detroit, United States of America
- Department of Pathology, Wayne State University School of Medicine, Detroit, United States of America
- Tumor Biology and Microenvironment Program of the Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, United States of America
| |
Collapse
|
2
|
Liu X, Huang Y, Yuan H, Qi X, Manjunath Y, Avella D, Kaifi JT, Miao Y, Li M, Jiang K, Li G. Disruption of oncogenic liver-intestine cadherin (CDH17) drives apoptotic pancreatic cancer death. Cancer Lett 2019; 454:204-214. [PMID: 31004701 DOI: 10.1016/j.canlet.2019.04.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
Liver-intestine cadherin (CDH17) has been known to function as a tumor stimulator and diagnostic marker for almost two decades. However, its function in highly malignant pancreatic cancer (PC) has yet to be elucidated. Using different strategies including siRNA, shRNA, and CRISPR technology, we successfully induced knockdown and knockout of CDH17 in Panc02-H7 cells and established the corresponding stable cell lines. With these cells, we demonstrated that loss of CDH17 function not only suppressed Panc02-H7 cell growth in vitro but also significantly slowed orthotopic tumor growth in vivo, resulting in the significant life extension. In vitro studies demonstrated that impairing CDH17 inhibited cell proliferation, colony formation, and motility by mechanistically modulating pro- and anti-apoptosis events in PC cells, as CDH17 suppression obviously increased expression of Bad, cytochrome C, cleaved caspase 3, and cleaved PARP, and reduced expression of Bcl-2, Survivin, and pAkt. In vivo studies showed CDH17 knockout resulted in apoptotic PC tumor death through activating caspase-3 activity. Taken together, CDH17 functions as an oncogenic molecule critical to PC growth by regulating tumor apoptosis signaling pathways and CDH17 could be targeted to develop an anti-PC therapeutic approach.
Collapse
Affiliation(s)
- Xinjian Liu
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, 65212, USA; Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yue Huang
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Hao Yuan
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, 65212, USA; Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xiaoqiang Qi
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Yariswamy Manjunath
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Diego Avella
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Jussuf T Kaifi
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Yi Miao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Min Li
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Kuirong Jiang
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, 65212, USA; Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Guangfu Li
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA; Ellis Fischel Cancer Center, University of Missouri-Columbia, Columbia, MO, 65212, USA; Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO, 65212, USA.
| |
Collapse
|
3
|
Chang YY, Yu LCH, Yu IS, Jhuang YL, Huang WJ, Yang CY, Jeng YM. Deletion of cadherin-17 enhances intestinal permeability and susceptibility to intestinal tumour formation. J Pathol 2018; 246:289-299. [PMID: 30047135 DOI: 10.1002/path.5138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/28/2018] [Accepted: 06/05/2018] [Indexed: 01/08/2023]
Abstract
Cadherin-17 is an adhesion molecule expressed specifically in intestinal epithelial cells. It is frequently underexpressed in human colorectal cancer. The physiological function of cadherin-17 and its role in tumourigenesis have not yet been determined. We used the transcription activator-like effector nuclease technique to generate a Cdh17 knockout (KO) mouse model. Intestinal tissues were analysed with histological, immunohistochemical and ultrastructural methods. Colitis was induced by oral administration of dextran sulphate sodium (DSS), and, to study effects on intestinal tumourigenesis, mice were given azoxymethane (AOM) and DSS to induce colitis-associated cancer. Cdh17 KO mice were viable and fertile. The histology of their small and large intestines was similar to that of wild-type mice. The junctional architecture of the intestinal epithelium was preserved. The loss of cadherin-17 resulted in increased permeability and susceptibility to DSS-induced colitis. The AOM/DSS model demonstrated that Cdh17 KO enhanced tumour formation and progression in the intestine. Increased nuclear translocation of Yap1, but not of β-catenin, was identified in the tumours of Cdh17 KO mice. In conclusion, cadherin-17 plays a crucial role in intestinal homeostasis by limiting the permeability of the intestinal epithelium. Cadherin-17 is also a tumour suppressor for intestinal epithelia. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ya-Yun Chang
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| | - Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - I-Shing Yu
- Laboratory Animal Centre, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Lin Jhuang
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan.,Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Ju Huang
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan.,Department of Oral Hygiene, Hsin-Sheng College of Medical Care and Management, Taoyuan, Taiwan
| | - Ching-Yao Yang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Ming Jeng
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan.,Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Zhang C, Shen Y, Wang J, Zhou M, Chen Y. Identification of key pathways and genes in Barrett's esophagus using integrated bioinformatics methods. Mol Med Rep 2017; 17:3069-3077. [PMID: 29257318 PMCID: PMC5783528 DOI: 10.3892/mmr.2017.8274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 11/14/2017] [Indexed: 12/30/2022] Open
Abstract
Barrett's esophagus (BE) is a premalignant lesion of esophageal adenocarcinoma. The aim of the present study was to investigate the possible mechanisms and biomarkers of BE. To identify the differentially expressed microRNAs (DEmiRNAs) and genes (DEGs) in BE, the miRNA expression profile GSE20099 and the gene expression profiles GSE26886, GSE13083 and GSE34619 were obtained from the Gene Expression Omnibus (GEO) database. DEGs and DEmiRNAs were screened for using the GEO2R tool. Using DAVID, functional and pathway enrichment analysis was performed to explore the biological function of identified DEGs. The protein-protein interaction (PPI) network was detected using STRING and constructed by Cytoscape software. Furthermore, targets of identified DEmiRNAs were predicted by the miRecords database, then integrated with the identified DEGs to obtain key genes involved in BE. In total, 311 DEGs were identified. These genes were significantly enriched in the pancreatic secretion, metabolic pathways and cytochrome P450 drug metabolism pathways. In the PPI network, 16 hub genes, including keratin 16, cystic fibrosis transmembrane conductance regulator, involucrin, protein kinase C α and cadherin 17 were identified. Following integration of the predicted target genes of DEmiRNAs with DEGs, three key BE genes were identified: PRKCA, CDH17 and epiregulin. In conclusion, a comprehensive bioinformatics analysis of identified DEGs and DEmiRNAs was performed to elucidate potential pathways and biomarkers involved in the development of BE.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Yujie Shen
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Jiazheng Wang
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Mingxia Zhou
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Yingwei Chen
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
5
|
Srivastava S, Kern F, Sharma N, McKeon F, Xian W, Yeoh KG, Ho KY, Teh M. FABP1 and Hepar expression levels in Barrett's esophagus and associated neoplasia in an Asian population. Dig Liver Dis 2017; 49:1104-1109. [PMID: 28807490 DOI: 10.1016/j.dld.2017.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Barrett's esophagus (BE) is a premalignant condition associated with esophageal adenocarcinoma (EAC). Evidence highlights that EAC is associated with an estimated 5-year survival of approximately 10-15%. Therefore, there is a need to determine which biomarkers are of value in the diagnosis of BE and beyond. The aim of our study was to evaluate the clinical significance of markers known to be expressed across BE and associated neoplasia. METHODS Retrospective tissues were obtained from columnar lined esophagus (CLE) without goblet cells (n=22), BE (n=29), dysplasia (n=14), and EAC (n=10). Standardised immunohistochemistry for FABP1, Hepar, CDH17, and CDX2 were performed followed by quantitative staining and statistical analysis. RESULTS FABP1 expression was negligible in CLE and was highest in BE, with a further decrease in expression in dysplasia and EAC. Hepar expression was also negligible in CLE and was highest in dysplasia and BE, with a reduced expression in EAC. CDH17 and CDX2 showed a significantly higher expression in BE, dysplasia, and EAC compared to CLE. CONCLUSION All 4 markers were excellent diagnostic panels to clearly discriminate BE from CLE. Moreover, as FABP1 and Hepar have different expression levels in dysplasia and EAC, these markers could function as key diagnostic aids in helping to determine the state of disease progression.
Collapse
Affiliation(s)
| | - Florian Kern
- Genome Institute of Singapore, A-STAR, Singapore
| | - Neel Sharma
- Department of Medicine, National University Health System, Singapore
| | - Frank McKeon
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Wa Xian
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Khay Guan Yeoh
- Department of Medicine, National University Health System, Singapore
| | - Khek Yu Ho
- Department of Medicine, National University Health System, Singapore
| | - Ming Teh
- Department of Pathology, National University Health System, Singapore.
| |
Collapse
|
6
|
Chen ZE, Lin F. Application of immunohistochemistry in gastrointestinal and liver neoplasms: new markers and evolving practice. Arch Pathol Lab Med 2015; 139:14-23. [PMID: 25549141 DOI: 10.5858/arpa.2014-0153-ra] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Diagnosis of primary gastrointestinal and liver neoplasms is usually straightforward. Immunohistochemistry is most helpful to differentiate metastatic carcinomas with morphologic similarity and to resolve tumors of unknown origin. Recently, several new markers highly sensitive and specific for primary liver and gastrointestinal tumors have been discovered. Their potential diagnostic application has not been widely appreciated by general practicing pathologists. In addition, a new trend in immunohistochemistry application has started, focusing on assessing predictive markers (such as human epidermal growth factor receptor 2) and mutation-specific markers (v-raf murine sarcoma viral oncogene homolog B V600E) to directly guide clinical management. Practicing pathologists need to be aware of and prepared for this evolving trend. OBJECTIVES To summarize the usefulness of several recently discovered immunohistochemical markers in the study of gastrointestinal and liver tumors; to suggest the most current and effective immunohistochemical panels addressing common diagnostic challenges for these tumors; to share practical experience and useful tips for human epidermal growth factor receptor 2 testing in gastric and gastroesophageal junction adenocarcinoma and v-raf murine sarcoma viral oncogene homolog B V600E immunohistochemistry in colorectal carcinoma. DATA SOURCES Sources include literature review, and authors' research data and practice experience. The cases illustrated are selected from the pathology archives of the Geisinger Medical Center (Danville, Pennsylvania). CONCLUSIONS Application of immunohistochemistry in gastrointestinal and liver tumors continues to evolve. New tumor-specific markers constantly emerge and help pathologists to further improve diagnostic accuracy. Assessment of predictive and prognostic markers by immunohistochemistry in routine pathologic diagnosis is a new trend and will greatly facilitate the advancement of personalized cancer therapy.
Collapse
Affiliation(s)
- Zongming Eric Chen
- From the Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania
| | | |
Collapse
|
7
|
Baumgartner W. Possible roles of LI-Cadherin in the formation and maintenance of the intestinal epithelial barrier. Tissue Barriers 2014; 1:e23815. [PMID: 24665380 PMCID: PMC3879124 DOI: 10.4161/tisb.23815] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 02/07/2023] Open
Abstract
LI-cadherin belongs to the so called 7D-cadherins, exceptional members of the cadherin superfamily which are characterized by seven extracellular cadherin repeats and a small cytosolic domain. Under physiological conditions LI-cadherin is expressed in the intestine and colon in human and mouse and in the rat also in hepatocytes. LI-cadherin was shown to act as a functional Ca2+-dependent adhesion molecule, linking neighboring cells and a lot of biophysical and biochemical parameters were determined in the last time. It is also known that dysregulated LI-cadherin expression can be found in a variety of diseases. Although there are several hypothesis and theoretical models concerning the function of LI-cadherin, the physiological role of LI-cadherin is still enigmatic.
Collapse
Affiliation(s)
- Werner Baumgartner
- Department of Cellular Neurobionics; RWTH-Aachen University; Aachen; Germany
| |
Collapse
|