1
|
Toropko M, Chuvpilo S, Karabelsky A. miRNA-Mediated Mechanisms in the Generation of Effective and Safe Oncolytic Viruses. Pharmaceutics 2024; 16:986. [PMID: 39204331 PMCID: PMC11360794 DOI: 10.3390/pharmaceutics16080986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression by inhibiting the translation of target transcripts. The expression profiles of miRNAs vary in different tissues and change with the development of diseases, including cancer. This feature has begun to be used for the modification of oncolytic viruses (OVs) in order to increase their selectivity and efficacy. OVs represent a relatively new class of anticancer drugs; they are designed to replicate in cancer tumors and destroy them. These can be natural viruses that can replicate within cancer tumor cells, or recombinant viruses created in laboratories. There are some concerns regarding OVs' toxicity, due to their ability to partially replicate in healthy tissues. In addition, lytic and immunological responses upon OV therapy are not always sufficient, so various OV editing methods are used. This review discusses the latest results of preclinical and clinical studies of OVs, modifications of which are associated with the miRNA-mediated mechanism of gene silencing.
Collapse
Affiliation(s)
- Mariia Toropko
- Gene Therapy Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (S.C.); (A.K.)
| | | | | |
Collapse
|
2
|
Liu Y, Chen P, Qi D, Chen L. Glaucocalyxin A Inhibits the Malignancies of Gastric Cancer Cells by Downregulating MDM2 and RNF6 via MiR-3658 and the SMG1-UPF mRNA Decay Pathway. Front Oncol 2022; 12:871169. [PMID: 35814430 PMCID: PMC9258495 DOI: 10.3389/fonc.2022.871169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/23/2022] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer (GC) ranks as the most common gastrointestinal cancer and is among the leading causes of cancer death worldwide. Glaucocalyxin A (GLA), an entkauranoid diterpene isolated from Rab-dosia japonica var., possesses various bioactivities. To date, the data on the effect of GLA on GC are still minimal, and the molecular mechanisms remain largely unknown. Herein, we found that GLA could significantly inhibit the proliferation, cell adhesion, and invasion of HGT-1, SNU-1, SNU-6, and NCI-N87 GC cells in a dose-dependent manner. GLA enhanced the apoptosis of the GC cells as evidenced by the increased caspase-3 activity and the elevated levels of cleaved caspase-3 and cleaved PARP in GC cells in the presence of GLA. We then showed that the downregulation of Murine Double Minute Clone 2 (MDM2) and Ring Finger Protein 6 (RNF6) by GLA was implicated in the GLA-induced inhibition of the GC cells. Furthermore, MDM2 and RNF6 were identified as the targets of miR-3658 that was downregulated in the GC cells and upregulated by GLA. Moreover, it was shown that miR-3658 was hypermethylated in the GC cells, and GLA could rescue the expression of miR-3658 via demethylation by abrogating EZH2-mediated epigenetic silencing. In addition to the miR-3658-MDM2/RNF6 regulatory axis, activation of the SMG1-UPF mRNA decay pathway contributed to the downregulation of MDM2 and RNF6 by GLA in the GC cells. The inhibitory effect of GLA on gastric cancer and the expression of MDM2 and RNF6 was also validated in in vivo study. Our findings suggest that has the therapeutic potential for GC by downregulating oncogenes via posttranscriptional regulation.
Collapse
Affiliation(s)
- Yanqi Liu
- Department of Gastroenterology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ping Chen
- Department of Gastroenterology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- *Correspondence: Ping Chen,
| | - Daqing Qi
- Department of Medical Affairs, Hangzhou Huqingyu Hall Pharmaceutical Co., Ltd., Hangzhou, China
| | - Linhui Chen
- Department of Medical Affairs, Hangzhou Huqingyu Hall Pharmaceutical Co., Ltd., Hangzhou, China
| |
Collapse
|
3
|
Nazarenko MS, Koroleva IA, Zarubin AA, Sleptcov AA. miRNA Regulome in Different Atherosclerosis Phenotypes. Mol Biol 2022. [DOI: 10.1134/s0026893322020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Raei N, Safaralizadeh R, Hesseinpourfeizi M, Yazdanbod A, Pourfarzi F, Latifi-Navid S. Crosstalk between lncRNAs and miRNAs in gastrointestinal cancer drug resistance. Life Sci 2021; 284:119933. [PMID: 34508759 DOI: 10.1016/j.lfs.2021.119933] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 02/09/2023]
Abstract
Gastrointestinal cancers are one of the most prevalent malignancies worldwide. Dysregulation of lncRNAs by epigenetic alteration is crucial in gastrointestinal carcinogenesis. Epigenetic alteration includes DNA methylation, chromatin remodeling, histone modifications, and deregulated-gene expression by miRNAs. LncRNAs are involved in biological processes, including, uncontrolled cell division, migration, invasion, and resistance to apoptosis and drugs. Multiple-drug resistance (MDR) is a crucial obstacle in effective chemotherapy for gastrointestinal cancers. MDR can be associated with the prognosis and diagnosis of patients receiving chemotherapeutic agents (i.e. cisplatin, oxaliplatin, platinum, 5-fluorouracil, gefitinib, methotrexate, taxol, cetuximab, docetaxel, and gemcitabine). In this review, we focused on recently known lncRNAs and their relation with miRNAs and chemotherapeutic drugs, and their modulation in gastrointestinal cancers. Moreover, we mentioned the future prospective and clinical application of lncRNAs as a critical indicator and biomarker in diagnosis, prognosis, staging, grading, and treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Negin Raei
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | | | - Abbas Yazdanbod
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Pourfarzi
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
| |
Collapse
|
5
|
Zhou W, Yang W, Yang J, Zhu H, Duan L, Wang X, Li Y, Niu L, Xiao S, Zhang R, Yang J, Hong L. miR‑483 promotes the development of colorectal cancer by inhibiting the expression level of EI24. Mol Med Rep 2021; 24:567. [PMID: 34109432 DOI: 10.3892/mmr.2021.12206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 04/30/2021] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRs) serve an important role in cell differentiation, proliferation and apoptosis by negatively regulating gene expression at the transcriptional or post‑transcriptional level. EI24 autophagy associated transmembrane protein (EI24) is a tumor suppressor gene that serves an important role in the occurrence and development of digestive system tumors. However, little is known regarding the relationship between EI24 and the prognosis of patients with colorectal cancer (CRC). Our previous study confirmed EI24 as the target molecule of miR‑483, using reporter gene detection. Thus, the aim of the present study was to elucidate the effect of the abnormal expression of miR‑483 on the malignant phenotype of CRC through a series of cell function experiments and nude mice tumorigenicity experiments, and to determine the expression level of EI24, a downstream target gene of miR‑483, in CRC and its relationship with patient prognosis. In CRC tissues and cells, the expression level of miR‑483 was upregulated, while the expression level of EI24 was downregulated. Cell function tests such as MTT assay, cell cycle assay, colony formation assay, Migration and invasion assays and nude mice tumorigenicity experiments demonstrated that the overexpression of miR‑483 promoted the proliferation, invasion and metastasis of CRC. Moreover, the reverse transcription‑quantitative PCR results indicated that overexpression of miR‑483 inhibited the expression level of EI24. The relationship between the clinical data and immunohistochemical results from 183 patients with CRC and survival was examined. It was found that the expression level of EI24 was positively associated with the prognosis of patients. As a cancer‑promoting factor, miR‑483 enhances the proliferation, migration and invasion of CRC cells by reducing the expression level of EI24.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wanli Yang
- Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jing Yang
- Department of Emergency, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Haijun Zhu
- Department of General Surgery, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Lili Duan
- Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiaoqian Wang
- Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yiding Li
- Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Liaoran Niu
- Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shuao Xiao
- Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Rui Zhang
- Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jianjun Yang
- Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Liu Hong
- Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
6
|
Shao JP, Su F, Zhang SP, Chen HK, Li ZJ, Xing GQ, Liu HJ, Li YY. miR-212 as potential biomarker suppresses the proliferation of gastric cancer via targeting SOX4. J Clin Lab Anal 2020; 34:e23511. [PMID: 32862489 PMCID: PMC7755761 DOI: 10.1002/jcla.23511] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 01/01/2023] Open
Abstract
Background Circulating microRNAs that post‐transcriptionally regulate gene expressions have been reported as promising biomarkers in cancer monitoring. This study was to identify the potential role of circulating miR‐212 in gastric cancer and whether it could serve as a novel biomarker for gastric cancer. Methods We detected the serum levels of miR‐212 in 100 health people and 110 gastric cancer patients and analyzed the relationships of the serum level of miR‐212 with gastric cancer. We detected the expression of miR‐212 in human gastric mucosal epithelial cell line (GES‐1) and human gastric cancer cell lines (NCI‐N87 and SNU‐16) using qRT‐PCR. Then, we detected the role of 5‐aza‐deoxycytidine on the epigenetic regulation of miR‐212 in human gastric cancer cell lines. Furthermore, luciferase reporter assay was used to detect binding activity of miR‐212 on SOX4 mRNA, and their functions on the cell proliferation and apoptosis. Results The expression of miR‐212 was higher in health people than that in gastric cancer patients, higher in gastric mucosal epithelial cell line than that in gastric cancer cells. miR‐212 can be a circulating biomarker and an independent prognostic factor of gastric cancer. Moreover, miR‐212 can directly regulate the 3′UTR of SOX4 mRNA to suppress p53 and Bax, resulting gastric cancer cells proliferation inhibition and apoptosis induction. Conclusion Our study demonstrated that miR‐212 was epigenetically downregulated in gastric cancer, and resulting low level of miR‐212 can be a potential circulating biomarker and poor prognosis predicator of gastric cancer.
Collapse
Affiliation(s)
- Jian-Ping Shao
- Department of General Surgery, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Feng Su
- Department of General Surgery, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Shu-Peng Zhang
- Department of General Surgery, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - He-Kai Chen
- Department of General Surgery, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Zhao-Jin Li
- Department of General Surgery, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Guo-Qiang Xing
- Department of General Surgery, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Hong-Jie Liu
- Department of Radiology, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Yong-Yuan Li
- Department of General Surgery, The Fifth Central Hospital of Tianjin, Tianjin, China
| |
Collapse
|
7
|
Qu X, Zhao L, Zhang R, Wei Q, Wang M. Differential microRNA expression profiles associated with microsatellite status reveal possible epigenetic regulation of microsatellite instability in gastric adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:484. [PMID: 32395528 PMCID: PMC7210178 DOI: 10.21037/atm.2020.03.54] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background Although microsatellite instability (MSI) is a powerful predictive biomarker for the efficacy of immunotherapy, the mechanism of MSI in sporadic gastrointestinal cancer is not fully understood. However, epigenetics, particularly microRNAs, has been suggested as one of the main regulators that contribute to the MSI formation. Methods We used microRNA expression data of 386 gastric adenocarcinoma samples from The Cancer Genome Atlas (TCGA) database to identify differential microRNA expression profiles by different MSI status. We also obtained putative common target genes of the top differential microRNAs with miRanda online tools, and we analyzed these data by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment (KEGG). Results We found that 56 and 67 gastric adenocarcinoma samples were positive for low and high MSI, respectively, and that a high MSI status was associated with age, sex and subregion (P=0.049, 0.014 and 0.007, respectively). In the 67 samples with a high MSI status, expression levels of 14 microRNAs were upregulated but five microRNAs were downregulated as assessed by the fold change (FC), compared with that of the 56 samples with a low MSI status (P<0.05, |FC| >2). Further analysis suggested that the expression of miR-210-3p, miR-582-3p, miR-30a-3p and miR-105-5p predicted a high MSI status (P=4.93×10−10, 5.63×10−10, 3.23×10−9 and 7.64×10−4, respectively). Regulation of the transcription pathways ranked the top of lists from both GO and KEGG analyses, and these microRNAs might regulate DNA damage-repair genes that were also associated with a high MSI status. Conclusions MiR-30a-3p and miR-105-5p are potential biomarkers for the MSI-H gastric adenocarcinoma, possibly by altering expression of DNA damage-repair genes.
Collapse
Affiliation(s)
- Xiaofei Qu
- Cancer institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Liqin Zhao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Ruoxin Zhang
- Cancer institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Epidemiology and Biostatistics, Fudan University School of Public Health, Shanghai 200032, China
| | - Qingyi Wei
- Cancer institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Mengyun Wang
- Cancer institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
8
|
Ni J, Liang S, Shan B, Tian W, Wang H, Ren Y. Methylation‑associated silencing of miR‑638 promotes endometrial carcinoma progression by targeting MEF2C. Int J Mol Med 2020; 45:1753-1770. [PMID: 32186750 PMCID: PMC7169941 DOI: 10.3892/ijmm.2020.4540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Promoter methylation‑associated silencing of cancer‑associated microRNAs (miRNAs) is a common epigenetic mechanism during tumorigenesis in various types of human cancer. However, this has not been comprehensively examined in endometrial carcinoma (EC). In the present study, an miRNA microarray consisting of 1,347 common human miRNAs was used to select potential tumor suppressive miRNAs that were hyper‑methylated in EC. This led to the identification of miR‑638, miR‑210 and miR‑3665. The methylation status of miR‑638 was examined by bisulfite sequencing polymerase chain reaction and miR‑638 expression was measured by TaqMan miRNA assays. EC cell lines transfected with vectors overexpressing miR‑638, its target gene myocyte enhancer factor 2C (MEF2C) or both, were constructed. Dual‑luciferase reporter assays, a xenograft mouse model and rescue experiments were designed to study miR‑638 and its target gene MEF2C. The results indicated that the promoter region of miR‑638 was highly methylated and the expression of miR‑638 was significantly downregulated in cancerous tissues from 42 patients with EC who underwent surgical resection. Additionally, a low expression of miR‑638 was significantly associated with advanced Federation of Gynecology and Obstetrics stage and was demonstrated to indicate shorter disease‑free survival. Functional studies indicated that the overexpression of miR‑638 in EC cell lines inhibited in vitro tumor progression and in vivo tumorigenicity. MEF2C was verified as a direct target of miR‑638 and was demonstrated to mediate the tumor‑suppressive function of miR‑638 in EC.
Collapse
Affiliation(s)
- Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Shanhui Liang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Boer Shan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Wenjuan Tian
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Huaying Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yulan Ren
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
9
|
Zheng H, Wang JJ, Yang XR, Yu YL. Upregulation of miR-34c after silencing E2F transcription factor 1 inhibits paclitaxel combined with cisplatin resistance in gastric cancer cells. World J Gastroenterol 2020; 26:499-513. [PMID: 32089626 PMCID: PMC7015722 DOI: 10.3748/wjg.v26.i5.499] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/13/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND MicroRNA 34c (miR-34c) has been reported to be associated with malignant types of cancer, however, it remains unknown whether miR-34c is involved in chemoresistance in gastric cancer (GC).
AIM To investigate the effect of miR-34c and its upstream transcription factor E2F1 on paclitaxel combined with cisplatin resistance in GC cells.
METHODS Paired GC tissues and adjacent normal tissues were randomly sampled from 74 GC patients. miR-34c and E2F1 were detected by real-time quantitative PCR (qPCR) and Western blot. In addition, the drug resistance of GC cells to paclitaxel and cisplatin was induced by concentration gradient increasing methods, and changes in miR-34c and E2F1 during this process were measured. Furthermore, E2F1 and miR-34c overexpression or underexpression vectors were constructed and transfected into drug-resistant GC cells. MTT was employed to test the sensitivity of cells to paclitaxel combined with cisplatin, qPCR was adopted to detect the expression of miR-34c, Western blot was applied to detect the expression levels of E2F1, drug resistance-related proteins and apoptosis-related proteins, and flow cytometry was used for the determination of cell apoptosis and cell cycle status.
RESULTS E2F1 was overexpressed while miR-34c was underexpressed in GC. After inducing GC cells to be resistant to paclitaxel and cisplatin, E2F1 expression increased while miR-34c expression decreased. Both silencing E2F1 and over-expressing miR-34c could increase the sensitivity of drug-resistant GC cells to paclitaxel combined with cisplatin, promote cell apoptosis and inhibit cell proliferation. Among which, silencing E2F1 could reduce the expression of drug resistance-related proteins and apoptosis-related proteins, while over-expression of miR-34c could upregulate the expression of apoptosis-related proteins without affecting the expression of MDR-1, MRP and other drug resistance-related proteins. Rescue experiments demonstrated that inhibiting miR-34c could significantly weaken the sensitization of drug resistant cells, and Si E2F1 to paclitaxel combined with cisplatin.
CONCLUSION E2F1 inhibits miR-34c to promote the proliferation of GC cells and enhance the resistance to paclitaxel combined with cisplatin, and silencing E2F1 is conducive to improving the efficacy of paclitaxel combined with cisplatin in GC cells.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Pathology, the Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Jin-Jing Wang
- Department of Pathology, the Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Xiao-Rong Yang
- Department of Pathology, the Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Yong-Lin Yu
- Department of Pathology, the Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| |
Collapse
|
10
|
Luo B, Zhou Y, Lv H, Sun S, Tang W. MS-275 potentiates the effect of YM-155 in lung adenocarcinoma via survivin downregulation induced by miR-138 and miR-195. Thorac Cancer 2019; 10:1355-1368. [PMID: 31090206 PMCID: PMC6558485 DOI: 10.1111/1759-7714.13076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND YM-155 has been proven to be an efficient antitumor suppressor in non-small cell lung cancer (NSCLC) cells. However, the suppressive effect of YM-155 on the expression of survivin is not sufficient and has a short half-life. MS-275, a histone deacetylase inhibitor, has significant antitumor capacity with a relatively long half-life. Our study explored whether MS-275 could enhance the inhibitory effect of YM-155 on LUAD proliferation. METHODS To investigate the synergistic effect of MS-275 and YM-155, we employed methyl thiazolyl tetrazolium and colony formation assays to access the inhibition effect of MS-275, YM-155, or a combination in A549 and HCC827 cell lines. We then detected the effect of MS-275 and YM-155 on the expression of survivin and pro-apoptotic proteins by Western blot and miR-138 or miR-195 expression by quantitative PCR. We also analyzed the methylation level of microRNAs (miRNAs) using methylation-sensitive quantitative PCR. Finally, we investigated the interaction between miRNAs and survivin by luciferase reporter assay. RESULTS MS-275 facilitated an inhibitory effect of YM-155 on lung adenocarcinoma cell proliferation. MS-275 can upregulate the level of acetylated H3, promote the degradation of DNA methyltransferases, and inhibit the methylation of miR-138 and miR-195 genes to elevate the expression of miR-138 and miR-195. Moreover, miR-138 and miR-195 showed a synergistic effect with YM-155 by directly binding to the 3 untranslated region of survivin to attenuate its expression. CONCLUSION For the first time, we report the synergistic effective of MS-275 and YM-155 and suggest a new direction for the future application of YM-155.
Collapse
Affiliation(s)
- Bai‐Ling Luo
- Respiratory DepartmentThe First Xiangya Hospital of Central South UniversityChangshaChina
| | - Yan Zhou
- Respiratory DepartmentThe First Xiangya Hospital of Central South UniversityChangshaChina
- Respiratory DepartmentThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Hui Lv
- Department of Pathology, School of MedicineUniversity of Colorado Anschutz Medical CampusAurora, ColoradoUSA
| | - Sheng‐Hua Sun
- Respiratory DepartmentThe Third Xiangya Hospital of Central South UniversityChangshaChina
| | - Wen‐Xiang Tang
- Respiratory DepartmentThe Third Xiangya Hospital of Central South UniversityChangshaChina
| |
Collapse
|
11
|
Analysis of 8q24.21 miRNA cluster expression and copy number variation in gastric cancer. Future Med Chem 2019; 11:947-958. [PMID: 31141411 DOI: 10.4155/fmc-2018-0477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To analyze gene expression and copy number of five miRNAs (miR-1204, miR-1205, miR-1206, miR-1207 and miR-1208) localized in this chromosome region in gastric cancer (GC). Materials & methods: 65 paired neoplastic and non-neoplastic specimens collected from GC patients and 20 non-neoplastic gastric tissues from cancer-free individuals were included in this study. The expression levels of the five miRNAs were accessed by real time qPCR and were correlated. Results: MiR-1207-3p, miR-1205, miR-1207-5p and miR-1208 were upregulated in approximately 50% of GC tumors in relation to those of adjacent non-neoplastic tissues. MiR-1205 expression was associated with gain of gene copies and was upregulated in adjacent non-neoplastic samples relative to external controls. Conclusion: The coexpression of the 8q24 miRNAs indicated the role of miR-1205 in the initiation of gastric cancer development.
Collapse
|
12
|
Wang Q, Wang G, Liu C, He X. Prognostic value of CpG island methylator phenotype among hepatocellular carcinoma patients: A systematic review and meta-analysis. Int J Surg 2018; 54:92-99. [PMID: 29698791 DOI: 10.1016/j.ijsu.2018.04.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/13/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE CpG island methylator phenotype (CIMP), characterized by multiple genes are concurrently methylated, has been reported to be associated with the prognosis of colorectal cancer. However, current studies have not explored the relationship between CIMP status with hepatocellular carcinoma (HCC) clinicopathological features. METHODS To assess these associations, we performed a comprehensive search of PubMed, EMBASE, and the Web of Science to identify all eligible studies. Publication bias was tested using Begg's and Egger's test. RESULTS Seven studies that involved 568 HCC patients (379 CIMP+ and 189 CIMP-) were eligible for inclusion in our study. CIMP+ in HCC was significantly associated with distant metastasis (OR = 4.28, 95% CI = 2.57-7.10, P < 0.00001, heterogeneity = 0.888), TNM tumor stage IIII + IV (OR = 5.73, 95% CI = 3.70-8.88, P < 0.0001, heterogeneity = 0.449), cirrhosis (OR = 2.54, 95% CI = 1.33,4.83, P = 0.005, heterogeneity = 0.121) and a higher level of AFP (>300 ng/ml) than those with CIMP- (OR = 2.63, 95% CI = 1.79,3.89, P < 0.00001, heterogeneity = 0.432). Moreover, CIMP+ was associated with an unfavorable overall survival (OS) (HR = 3.02, 95% CI = 1.60-5.70, P < 0.001, heterogeneity = 0.251) and a disease-free survival (DFS) (HR = 2.80, 95% CI = 1.79-4.37, P < 0.001, heterogeneity = 0.603). CONCLUSION CIMP is independently associated with significantly worse prognosis in HCC patients. Examination of CIMP status may be useful for identifying patients who are at higher risk for disease progression.
Collapse
Affiliation(s)
- Qian Wang
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Gang Wang
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Chaoxu Liu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 201907, China.
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
13
|
Zhang L, Yan DL, Yang F, Wang DD, Chen X, Wu JZ, Tang JH, Xia WJ. DNA methylation mediated silencing of microRNA-874 is a promising diagnosis and prognostic marker in breast cancer. Oncotarget 2018; 8:45496-45505. [PMID: 28525377 PMCID: PMC5542203 DOI: 10.18632/oncotarget.17569] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 04/17/2017] [Indexed: 01/26/2023] Open
Abstract
MicroRNA-874 (miR-874) is downregulated in several human cancers and has been suggested to be a tumor suppressor gene. However, the molecular mechanism of miR-874 downregulation in breast cancer has not been well elucidated. Here we aimed to study the aberrant hyper-methylation of CpG sites with the utility of miR-874 downreregulation in breast cancer and evaluate the clinical function of miR-874 as a prognostic marker. The miR-874 expressions in cells and tissues of two breast cancer lines were measured by real-time PCR. The DNA methylation status of the miR-874 promoter region in 19 pairs of breast cancer and adjacent normal samples was analyzed with Sequenom EpiTYPER MassArray. To evaluate whether miR-874 is a potential prognostic marker in breast cancer, we also explored the clinical long-time follow-up records from The Cancer Genome Atlas (TCGA). We found miR-874 expression was downregulated in 47 pairs of breast cancer tissues. Moreover, univariate and multivariate analysis revealed miR-874 expression may be a prognostic biomarker of overall survival in breast cancer patients. Preconditioning with 5-Aza-CdR in two cell lines elevated miR-874 expressions. The data from Sequenom EpiTYPER MassArray showed that DNA methylation of the promoter region of miR-874 was upregulated and accompanied by decreased miR-874 expression, which was further confirmed by TCGA. After comprehensive considerations, we think miR-874, which might be served as a prognostic biomarker, is mediated by DNA methylation.
Collapse
Affiliation(s)
- Lei Zhang
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, P.R. China
| | - Da-Li Yan
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, P.R. China
| | - Fan Yang
- Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China.,Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, P.R. China
| | - Dan-Dan Wang
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, P.R. China
| | - Xiu Chen
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, P.R. China
| | - Jian-Zhong Wu
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, P.R. China
| | - Jin-Hai Tang
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, P.R. China.,Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Wen-Jie Xia
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
14
|
Zhou Z, Lin Z, Pang X, Tariq MA, Ao X, Li P, Wang J. Epigenetic regulation of long non-coding RNAs in gastric cancer. Oncotarget 2018; 9:19443-19458. [PMID: 29721215 PMCID: PMC5922409 DOI: 10.18632/oncotarget.23821] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/25/2017] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is one of the most common cancers and is the second leading cause of cancer mortality worldwide. Therefore, it is urgent to explore new molecular biomarkers for early diagnosis, early treatment and prognosis for gastric cancer patients. Recently, increasing evidence has shown that epigenetic changes, such as aberrant DNA methylation, histone modifications, and noncoding RNAs (ncRNAs) expression, play substantial roles in the development and progression of malignancies. Among these changes, long non-coding RNAs (lncRNAs), a novel class of ncRNAs, are emerging as highly versatile actors in a variety of cellular processes by regulating gene expression at the epigenetic level as well as at the transcriptional and post-transcriptional levels. Hundreds of lncRNAs become dysregulated in the various pathological processes of gastric cancer, and multiple lncRNAs have been reported to function as tumor-suppressors or oncogenes, although the underlying mechanisms are still under investigation. Here, we provide an overview of the epigenetic regulation of chromatin and the molecular functions of lncRNAs; we focus on lncRNA-mediated epigenetic regulation of cancer-related gene expression in gastric cancer, as well as discuss the clinical implications of lncRNAs on epigenetic-related cancer treatments, which may contribute helpful approaches for the development of new potential strategies for future diagnosis and therapeutic intervention in human cancers.
Collapse
Affiliation(s)
- Zhixia Zhou
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Zhijuan Lin
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Xin Pang
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Muhammad Akram Tariq
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Xiang Ao
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| | - Jianxun Wang
- Center for Tumor Molecular Biology, Institute for Translational Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
15
|
Yao Q, Gu A, Wang Z, Xue Y. MicroRNA-144 functions as a tumor suppressor in gastric cancer by targeting cyclooxygenase-2. Exp Ther Med 2018; 15:3088-3095. [PMID: 29456712 DOI: 10.3892/etm.2018.5763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/29/2017] [Indexed: 12/23/2022] Open
Abstract
Gastric cancer (GC) poses a serious public health threat and the 5-year survival rate of patients with GC is low. MicroRNAs (miRNAs/miRs) may serve oncogenic or tumor suppressor functions during tumorigenesis by regulating cell proliferation, apoptosis, migration and invasion and it has been demonstrated that they may be dysregulated in various types of cancer. The present study demonstrated that miR-144 and GATA4 were downregulated in GC tissues and cell lines and suggested that this may be due to hypermethylation. Additionally, miR-144 and GATA4 had synergistic effects on GC cells by repressing cell proliferation and inducing cell cycle arrest and apoptosis. The results of bioinformatics and a luciferase reporter assay indicated that cyclooxygenase-2 (COX-2) is a direct target of miR-144 and that miR-144 negatively regulated the expression of COX-2, which inhibits the viability of GC cells. GATA4 also induced a similar effect on COX-2. Taken together, the results of the present study may improve understanding of the underlying mechanism of miR-144 and GATA4 in GC.
Collapse
Affiliation(s)
- Qiang Yao
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Anxin Gu
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Zhuozhong Wang
- Department of Statistics, Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Yingwei Xue
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
16
|
Yang W, Ma J, Zhou W, Cao B, Zhou X, Yang Z, Zhang H, Zhao Q, Fan D, Hong L. Molecular mechanisms and theranostic potential of miRNAs in drug resistance of gastric cancer. Expert Opin Ther Targets 2017; 21:1063-1075. [PMID: 28994330 DOI: 10.1080/14728222.2017.1389900] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Systemic chemotherapy is a curative approach to inhibit gastric cancer cells proliferation. Despite the great progress in anti-cancer treatment achieved during the last decades, drug resistance and treatment refractoriness still extensively persists. Recently, accumulating studies have highlighted the role of miRNAs in drug resistance of gastric cancers by modulating some drug resistance-related proteins and genes expression. Pre-clinical reports indicate that miRNAs might serve as ideal biomarkers and potential targets, thus holding great promise for developing targeted therapy and personalized treatment for the patients with gastric cancer. Areas covered: This review provide a comprehensive overview of the current advances of miRNAs and molecular mechanisms underlying miRNA-mediated drug resistance in gastric cancer. We particularly focus on the potential values of drug resistance-related miRNAs as biomarkers and novel targets in gastric cancer therapy and envisage the future research developments of these miRNAs and challenges in translating the new findings into clinical applications. Expert opinion: Although the concrete mechanisms of miRNAs in drug resistance of gastric cancer have not been fully clarified, miRNA may be a promising theranostic approach. Further studies are still needed to facilitate the clinical applications of miRNAs in drug resistant gastric cancer.
Collapse
Affiliation(s)
- Wanli Yang
- a State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Jiaojiao Ma
- a State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Wei Zhou
- a State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Bo Cao
- b The First Brigade of Student , Fourth Military Medical University , Xi'an , China
| | - Xin Zhou
- b The First Brigade of Student , Fourth Military Medical University , Xi'an , China
| | - Zhiping Yang
- a State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Hongwei Zhang
- c Department of Digestive Surgery, Xijing Hospital , Fourth Military Medical University , Xi'an , China
| | - Qingchuan Zhao
- c Department of Digestive Surgery, Xijing Hospital , Fourth Military Medical University , Xi'an , China
| | | | - Liu Hong
- a State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| |
Collapse
|
17
|
Sandoval-Bórquez A, Polakovicova I, Carrasco-Véliz N, Lobos-González L, Riquelme I, Carrasco-Avino G, Bizama C, Norero E, Owen GI, Roa JC, Corvalán AH. MicroRNA-335-5p is a potential suppressor of metastasis and invasion in gastric cancer. Clin Epigenetics 2017; 9:114. [PMID: 29075357 PMCID: PMC5645854 DOI: 10.1186/s13148-017-0413-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022] Open
Abstract
Background Multiple aberrant microRNA expression has been reported in gastric cancer. Among them, microRNA-335-5p (miR-335), a microRNA regulated by DNA methylation, has been reported to possess both tumor suppressor and tumor promoter activities. Results Herein, we show that miR-335 levels are reduced in gastric cancer and significantly associate with lymph node metastasis, depth of tumor invasion, and ultimately poor patient survival in a cohort of Amerindian/Hispanic patients. In two gastric cancer cell lines AGS and, Hs 746T the exogenous miR-335 decreases migration, invasion, viability, and anchorage-independent cell growth capacities. Performing a PCR array on cells transfected with miR-335, 19 (30.6%) out of 62 genes involved in metastasis and tumor invasion showed decreased transcription levels. Network enrichment analysis narrowed these genes to nine (PLAUR, CDH11, COL4A2, CTGF, CTSK, MMP7, PDGFA, TIMP1, and TIMP2). Elevated levels of PLAUR, a validated target gene, and CDH11 were confirmed in tumors with low expression of miR-335. The 3′UTR of CDH11 was identified to be directly targeted by miR-335. Downregulation of miR-335 was also demonstrated in plasma samples from gastric cancer patients and inversely correlated with DNA methylation of promoter region (Z = 1.96, p = 0.029). DNA methylation, evaluated by methylation-specific PCR assay, was found in plasma from 23 (56.1%) out of 41 gastric cancer patients but in only 9 (30%) out of 30 healthy donors (p = 0.029, Pearson’s correlation). Taken in consideration, our results of the association with depth of invasion, lymph node metastasis, and poor prognosis together with functional assays on cell migration, invasion, and tumorigenicity are in accordance with the downregulation of miR-335 in gastric cancer. Conclusions Comprehensive evaluation of metastasis and invasion pathway identified a subset of associated genes and confirmed PLAUR and CDH11, both targets of miR-335, to be overexpressed in gastric cancer tissues. DNA methylation of miR-335 may be a promissory strategy for non-invasive approach to gastric cancer. Electronic supplementary material The online version of this article (10.1186/s13148-017-0413-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alejandra Sandoval-Bórquez
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratory of Molecular Pathology, Department of Pathology, School of Medicine, BIOREN-CEGIN, and Graduate Program in Applied Cell and Molecular Biology, Universidad de La Frontera, Temuco, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Iva Polakovicova
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Carrasco-Véliz
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Instituto de Química, Faculty of Science, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Lorena Lobos-González
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile.,Fundación Ciencia y Vida, Parque Biotecnológico, Santiago, Chile
| | - Ismael Riquelme
- Laboratory of Molecular Pathology, Department of Pathology, School of Medicine, BIOREN-CEGIN, and Graduate Program in Applied Cell and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Gonzalo Carrasco-Avino
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Pathology, Faculty of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Carolina Bizama
- Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Norero
- Esophagogastric Surgery Unit, Hospital Dr. Sótero del Río, Santiago, Chile.,Digestive Surgery Department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gareth I Owen
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Roa
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratory of Molecular Pathology, Department of Pathology, School of Medicine, BIOREN-CEGIN, and Graduate Program in Applied Cell and Molecular Biology, Universidad de La Frontera, Temuco, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro H Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Center UC for Investigational in Oncology (CITO), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Hematology-Oncology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Li L, Zhao J, Huang S, Wang Y, Zhu L, Cao Y, Xiong J, Deng J. MiR-93-5p promotes gastric cancer-cell progression via inactivation of the Hippo signaling pathway. Gene 2017; 641:240-247. [PMID: 29045821 DOI: 10.1016/j.gene.2017.09.071] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 09/01/2017] [Accepted: 09/26/2017] [Indexed: 01/07/2023]
Abstract
MiR-93-5p has been previously found to be associated with gastric cancer (GC) tumorigenesis; however, the current understanding of its function in this context remains largely incomplete. In the present study, we showed that miR-93-5p was upregulated in GC tissues. We also demonstrated that miR-93-5p overexpression promoted the proliferation, migration, invasion, and chemoresistance of SGC-7901 cells in vitro, and conversely, that endogenously silencing miR-93-5p expression induced the opposite effects in HGC-27 cells. Overexpression of miR-93-5p was found to inactivate the Hippo pathway, and furthermore, miR-93-5p knockdown activated Hippo signaling. MiR-93-5p upregulation was also shown to inhibit the expression of two well-characterized Hippo pathway regulators, protocadherin Fat 4 (FAT4), and large tumor suppressors 2 (LATS2), at both the mRNA and protein level. Additionally, the results of bioinformatics analyses and luciferase reporter assays indicated that miR-93-5p directly targets the 3'-UTR of FAT4 and LATS2. Taken together, these results demonstrate that miR-93-5p promotes GC-cell progression via the inactivation of the Hippo signaling pathway, and thus, represents a potential therapeutic target for the treatment of GC.
Collapse
Affiliation(s)
- Li Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, PR China
| | - Jianguo Zhao
- Department of Oncology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, PR China
| | - Shanshan Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, PR China
| | - Yi Wang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, PR China
| | - Lingling Zhu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, PR China
| | - Yuan Cao
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, PR China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, PR China.
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, PR China.
| |
Collapse
|
19
|
Epigenetic drivers of tumourigenesis and cancer metastasis. Semin Cancer Biol 2017; 51:149-159. [PMID: 28807546 DOI: 10.1016/j.semcancer.2017.08.004] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/13/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023]
Abstract
Since the completion of the first human genome sequence and the advent of next generation sequencing technologies, remarkable progress has been made in understanding the genetic basis of cancer. These studies have mainly defined genetic changes as either causal, providing a selective advantage to the cancer cell (a driver mutation) or consequential with no selective advantage (not directly causal, a passenger mutation). A vast unresolved question is how a primary cancer cell becomes metastatic and what are the molecular events that underpin this process. However, extensive sequencing efforts indicate that mutation may not be a causal factor for primary to metastatic transition. On the other hand, epigenetic changes are dynamic in nature and therefore potentially play an important role in determining metastatic phenotypes and this area of research is just starting to be appreciated. Unlike genetic studies, current limitations in studying epigenetic events in cancer metastasis include a lack of conceptual understanding and an analytical framework for identifying putative driver and passenger epigenetic changes. In this review, we discuss the key concepts involved in understanding the role of epigenetic alterations in the metastatic cascade. We particularly focus on driver epigenetic events, and we describe analytical approaches and biological frameworks for distinguishing between "epi-driver" and "epi-passenger" events in metastasis. Finally, we suggest potential directions for future research in this important area of cancer research.
Collapse
|
20
|
Yang W, Ma J, Zhou W, Zhou X, Cao B, Fan D, Hong L. Biological implications and clinical value of mir-210 in gastrointestinal cancer. Expert Rev Gastroenterol Hepatol 2017; 11:539-548. [PMID: 28317401 DOI: 10.1080/17474124.2017.1309281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypoxia, a common feature of tumor microenvironment, is known to accelerate tumor development and growth by promoting the formation of a neoplastic environment. Recent studies have provided a wealth of evidence that miRNAs are significant members of the adaptive response to low oxygen in tumors. miR-210 is one of the hypoxia-induced miRNAs, which has been reported extensively in cancer researches. However, there is no systematic discussion about the role of miR-210 in gastrointestinal cancer. We conducted a literature research in database including PubMed, Elsevier Science Direct and Medline before 16 September 2016, in order to collect articles of miR-210 in gastrointestinal cancer. Areas covered: In the present review, we mainly discuss the following aspects: hypoxia-induced dysregulation of miR-210, the expression of miR-210 and tumorigenesis, the resultant changes of miR-210 targets and its roles in different types of gastrointestinal cancer progression, the diagnostic, therapeutic and prognostic value of miR-210 in gastrointestinal cancer. Expert commentary: Numerous researches have demonstrated the values of miR-210 in cancer diagnosis, prognosis and targeted therapies, especially in gastrointestinal cancers. However, there are also some existing problems and challenges in translating the new research findings into clinical utility. Further investigations and studies are still urgently required.
Collapse
Affiliation(s)
- Wanli Yang
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Jiaojiao Ma
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Wei Zhou
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Xin Zhou
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Bo Cao
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Daiming Fan
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| | - Liu Hong
- a State key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases , Fourth Military Medical University , Xi'an , China
| |
Collapse
|
21
|
da Silva Oliveira KC, Thomaz Araújo TM, Albuquerque CI, Barata GA, Gigek CO, Leal MF, Wisnieski F, Rodrigues Mello Junior FA, Khayat AS, de Assumpção PP, Rodriguez Burbano RM, Smith MC, Calcagno DQ. Role of miRNAs and their potential to be useful as diagnostic and prognostic biomarkers in gastric cancer. World J Gastroenterol 2016; 22:7951-7962. [PMID: 27672290 PMCID: PMC5028809 DOI: 10.3748/wjg.v22.i35.7951] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/14/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
Alterations in epigenetic control of gene expression play an important role in many diseases, including gastric cancer. Many studies have identified a large number of upregulated oncogenic miRNAs and downregulated tumour-suppressor miRNAs in this type of cancer. In this review, we provide an overview of the role of miRNAs, pointing to their potential to be useful as diagnostic and/or prognostic biomarkers in gastric cancer. Moreover, we discuss the influence of polymorphisms and epigenetic modifications on miRNA activity.
Collapse
|
22
|
MiR-141 Inhibits Gastric Cancer Proliferation by Interacting with Long Noncoding RNA MEG3 and Down-Regulating E2F3 Expression. Dig Dis Sci 2015; 60:3271-82. [PMID: 26233544 DOI: 10.1007/s10620-015-3782-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/21/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND MiR-141 and long noncoding RNA MEG3 have been independently reported to be tumor suppressor genes in various cancers. However, their expression has never been previously associated with gastric cancer (GC). AIMS To investigate the interaction of miR-141 and MEG3 in GC. METHODS QRT-PCR was used to detect miR-141, MEG3, and E2F3 in gastric tissues and cells. CCK-8 and flow cytometry analysis were used to detect cell functions. Western blot and luciferase activity were used to identify E2F3 as one of the direct targets of miR-141. RESULTS We found that expression of both miR-141 and MEG3 was significantly reduced in GC compared with levels in matched nonmalignant tissues. Positive correlation between miR-141 and MEG3 was found in both tumor tissues and control tissues. Furthermore, the over-expression of either miR-141 or MEG3 in 7901 and MKN45 cells inhibited cell proliferation and cell cycle progression and promoted cell apoptosis. E2F3 was identified as a target of miR-141, and its inhibition significantly reduced MEG3 expression. E2F3 expression was also found to be negatively associated with both MEG3 and miR-141. E2F3 over-expression partly reversed the changes caused by transfection of miR-141 mimic, and inhibition of miR-141 or MEG3 overrides MEG3- or miR-141-induced modulation of cell growth in GC. CONCLUSIONS These findings together suggested that miR-141 could be interacting with MEG3 and targeting E2F3, and these factors may play important anti-tumor effects in GC pathogenesis and provide therapeutic targets in the clinics.
Collapse
|
23
|
Gao FY, Liu QY, Yuan L, Xuan SY. Upregulation of microRNA-132 in gastric cancer promotes cell proliferation via retinoblastoma 1 targeting. Mol Med Rep 2015; 12:7005-10. [PMID: 26324336 DOI: 10.3892/mmr.2015.4253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 06/18/2015] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer is one of the most frequent malignancies and a leading cause of cancer-related mortality worldwide. MicroRNAs (miRs), a class of small non‑coding RNAs, have been shown to be critical in tumorigenesis. In the present study, the expression levels of miR‑132 were analyzed in gastric cancer samples using quantitative reverse transcription‑polymerase chain reaction. In addition, the cell viability, proliferation and invasion abilities were determined in two gastric cancer cell lines, NCI‑N87 and MGC80‑3, that were transfected with miR‑132 mimics or antisense oligos. It was found that miR‑132 expression was significantly upregulated in gastric cancer tissues when compared with adjacent non‑cancerous tissues. At the molecular level, the data demonstrated that miR‑132 inhibits the protein levels of retinoblastoma 1 (RB1) by targeting the 3'‑untranslated region. Furthermore, reintroduction of RB1 markedly attenuated the proliferative roles of miR‑132 overexpression. Therefore, the present results indicate that the miR‑132/RB1 regulatory axis may be a potential novel diagnostic and therapeutic target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Feng-Yu Gao
- Department of Gastroenterology, Hiser Medical Group of Qingdao, Medical College of Qingdao University, Qingdao, Shandong 266033, P.R. China
| | - Qun-Ying Liu
- The Maternity Centre, The No. 8 People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Li Yuan
- Department of Rehabilitation, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Shi-Ying Xuan
- Department of Gastroenterology, Qingdao Municipal Hospital, Medical College of Qingdao University, Qingdao, Shandong 266033, P.R. China
| |
Collapse
|
24
|
Noncoding Genomics in Gastric Cancer and the Gastric Precancerous Cascade: Pathogenesis and Biomarkers. DISEASE MARKERS 2015; 2015:503762. [PMID: 26379360 PMCID: PMC4563069 DOI: 10.1155/2015/503762] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/22/2015] [Accepted: 07/26/2015] [Indexed: 12/17/2022]
Abstract
Gastric cancer is the fifth most common cancer and the third leading cause of cancer-related death, whose patterns vary among geographical regions and ethnicities. It is a multifactorial disease, and its development depends on infection by Helicobacter pylori (H. pylori) and Epstein-Barr virus (EBV), host genetic factors, and environmental factors. The heterogeneity of the disease has begun to be unraveled by a comprehensive mutational evaluation of primary tumors. The low-abundance of mutations suggests that other mechanisms participate in the evolution of the disease, such as those found through analyses of noncoding genomics. Noncoding genomics includes single nucleotide polymorphisms (SNPs), regulation of gene expression through DNA methylation of promoter sites, miRNAs, other noncoding RNAs in regulatory regions, and other topics. These processes and molecules ultimately control gene expression. Potential biomarkers are appearing from analyses of noncoding genomics. This review focuses on noncoding genomics and potential biomarkers in the context of gastric cancer and the gastric precancerous cascade.
Collapse
|
25
|
Effects of Two Common Polymorphisms rs2910164 in miR-146a and rs11614913 in miR-196a2 on Gastric Cancer Susceptibility. Gastroenterol Res Pract 2015; 2015:764163. [PMID: 25983750 PMCID: PMC4423019 DOI: 10.1155/2015/764163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 10/25/2014] [Indexed: 12/12/2022] Open
Abstract
Background. Single nucleotide polymorphisms (SNPs) in genes encoding microRNAs may play important role in the development of gastric cancer. It has been reported that common SNPs rs2910164 in miR-146a and rs11614913 in miR-196a2 are associated with susceptibility to gastric cancer. The published results remain inconclusive or even controversial. A meta-analysis was conducted to quantitatively assess potential association between the two common SNPs and gastric cancer risk. Methods. A comprehensive literature search was performed in multiple internet-based electronic databases. Data from 12 eligible studies were extracted to estimate pooled odds ratios (ORs) and 95% confidence intervals (95% CI). Results. C allele of rs2910164 is associated with reduced gastric cancer risk in heterozygote model and dominant model whereas rs11614913 indicates no significant association. Subgroup analysis demonstrates that C allele of rs2910164 and rs11614913 may decrease susceptibility to diffuse type gastric cancer in dominant model and recessive model, respectively, while rs11614913 increased intestinal type gastric cancer in dominant model. Conclusion. SNPs rs2910164 and rs11614913 might have effect on gastric cancer risk in certain genetic models and specific types of cancer. Further well-designed studies should be considered to validate the potential effect.
Collapse
|
26
|
Na HK, Woo JH. Helicobacter pylori Induces Hypermethylation of CpG Islands Through Upregulation of DNA Methyltransferase: Possible Involvement of Reactive Oxygen/Nitrogen Species. J Cancer Prev 2015; 19:259-64. [PMID: 25574460 PMCID: PMC4285956 DOI: 10.15430/jcp.2014.19.4.259] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 12/27/2022] Open
Abstract
Helicobacter pylori infection has been considered to be one of the major factors implicated in etiology of gastric cancer. Aberrant DNA methylation accounts for epigenetic modifications induced by H. pylori. H. pylori-induced hypermethylation has been linked to enhancement of the rates of metastasis and recurrence in gastric cancer patients. H. pylori-induced gene hypermethylation has been known to be associated with inflammation. However, the molecular mechanisms underlying H. pylori-induced hypermethylation remain largely unknown. This review highlights possible involvement of reactive oxygen/nitrogen species in H. pylori-induced hypermethylation and gastric carcinogenesis.
Collapse
Affiliation(s)
- Hye-Kyung Na
- Department of Food and Nutrition, College of Human Ecology, Sungshin Women's University, Seoul, Korea
| | - Jeong-Hwa Woo
- Department of Food and Nutrition, College of Human Ecology, Sungshin Women's University, Seoul, Korea
| |
Collapse
|
27
|
Long XH, Zhou YF, Peng AF, Zhang ZH, Chen XY, Chen WZ, Liu JM, Huang SH, Liu ZL. Demethylation-mediated miR-129-5p up-regulation inhibits malignant phenotype of osteogenic osteosarcoma by targeting Homo sapiens valosin-containing protein (VCP). Tumour Biol 2015; 36:3799-806. [DOI: 10.1007/s13277-014-3021-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 12/26/2014] [Indexed: 01/19/2023] Open
|
28
|
Cho M, Eze O, Xu R. Molecular genetics of gastric adenocarcinoma in clinical practice. World J Med Genet 2014; 4:58-68. [DOI: 10.5496/wjmg.v4.i3.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 05/16/2014] [Indexed: 02/06/2023] Open
Abstract
The molecular genetics of gastric carcinoma (GC) dictates their biology and clinical behavior. The two morphologically distinct types of gastric carcinoma by Lauren classification, i.e., intestinal and diffuse cell types, have a significant difference in clinical outcome. These two types of GC have different molecular pathogenetic pathways with unique genetic alterations. In addition to environmental and other etiologies, intestinal type GC is associated with Helicobacter pylori (H. pylori) infection and involves a multistep molecular pathway driving the normal epithelium to intestinal metaplasia, dysplasia, and malignant transformation by chromosomal and/or microsatellite instability (MSI), mutation of tumor suppressor genes, and loss of heterozygosity among others. Diffuse type shows no clear causal relationship with H. pylori infection, but is commonly associated with deficiency of cell-cell adhesion due to mutation of the E-cadherin gene (CDH1), and a manifestation of the hereditary gastric cancer syndrome. Thus, detection of CDH1 mutation or loss of expression of E-cadherin may aid in early diagnosis or screening of diffuse type GC. Detection of certain genetic markers, for example, MSI and matrix metalloproteinases, may provide prognostic information, particularly for intestinal type. The common genetic alterations may offer therapeutic targets for treatment of GC. Polymorphisms in Thymidylate synthase to metabolize 5-fluorouracil, glutathione S-transferase for degradation of Cisplatin, and amplification/overexpression of human epidermal growth factor receptor 2 targeted by monoclonal antibody Trastuzumab, are a few examples. P13K/Akt/mTOR pathway, c-Met pathways, epidermal growth factor receptor, insulin-like growth factor receptor, vascular endothelial growth factor receptor fibroblast growth factor receptor, and micro RNAs are several potential therapeutic biomarkers for GC under investigation.
Collapse
|
29
|
Li DJ, Zhang GY, Jie ZG, Li ZR. MicroRNAs related to invasiveness and metastasis of gastric cancer. Shijie Huaren Xiaohua Zazhi 2014; 22:3219-3224. [DOI: 10.11569/wcjd.v22.i22.3219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metastasis plays an important role in the prognosis of patients with cancer. It is known that several steps are necessary for clonal cells to disseminate from their primary tumor site and colonize distant tissues. It will provide useful insights for effective treatment of cancer to investigate the molecular actors regulating this process. MicroRNAs, 19-25 nt in length, are a class of non-coding RNA, and they can result in degradation of specific mRNAs or inhibit their translation. They have been known as negative regulators of gene expression and are involved in many biological processes, including cell growth, differentiation and apoptosis. The relationship between the abnormal expression of microRNAs and tumors has been widely studied. Some recent research has clarified the role of microRNAs in tumor invasion and metastases. This paper reviews the recent progress in research of microRNAs related to invasiveness and metastasis of gastric cancer.
Collapse
|
30
|
Ishimoto T, Sawayama H, Sugihara H, Baba H. Interaction between gastric cancer stem cells and the tumor microenvironment. J Gastroenterol 2014; 49:1111-20. [PMID: 24652101 DOI: 10.1007/s00535-014-0952-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/05/2014] [Indexed: 02/04/2023]
Abstract
Gastric cancer (GC) remains a leading cause of cancer-related deaths worldwide. Cancer stem cells (CSCs) are selectively capable of tumor initiation and are implicated in tumor relapse and metastasis, thus, governing the prognosis of GC patients. Stromal cells and extracellular matrix adjacent to cancer cells are known to form a supportive environment for cancer progression. CSC properties are also regulated by their microenvironment through cell signaling and related factors. This review presents the current findings regarding the influence of the tumor microenvironment on GC stem cells, which will support the development of novel therapeutic strategies for patients with GC.
Collapse
Affiliation(s)
- Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | | | | | | |
Collapse
|