1
|
Khalifa A, Ibrahim HIM, Sheikh A, Khalil HE. Attenuation of Immunogenicity in MOG-Induced Oligodendrocytes by the Probiotic Bacterium Lactococcus Sp. PO3. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1731. [PMID: 37893449 PMCID: PMC10608413 DOI: 10.3390/medicina59101731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Milk is healthy and includes several vital nutrients and microbiomes. Probiotics in milk and their derivatives modulate the immune system, fight inflammation, and protect against numerous diseases. The present study aimed to isolate novel bacterial species with probiotic potential for neuroinflammation. Materials and Methods: Six milk samples were collected from lactating dairy cows. Bacterial isolates were obtained using standard methods and were evaluated based on probiotic characteristics such as the catalase test, hemolysis, acid/bile tolerance, cell adhesion, and hydrophobicity, as well as in vitro screening. Results: Nine morphologically diverse bacterial isolates were found in six different types of cow's milk. Among the isolates, PO3 displayed probiotic characteristics. PO3 was a Gram-positive rod cell that grew in an acidic (pH-2) salty medium containing bile salt and salinity (8% NaCl). PO3 also exhibited substantial hydrophobicity and cell adhesion. The sequencing comparison of the 16S rRNA genes revealed that PO3 was Lactococcus raffinolactis with a similarity score of 99.3%. Furthermore, PO3 was assessed for its neuroanti-inflammatory activity on human oligodendrocyte (HOG) cell lines using four different neuroimmune markers: signal transducer and activator of transcription (STAT-3), myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and GLAC in HOG cell lines induced by MOG. Unlike the rest of the evaluated neuroimmune markers, STAT-3 levels were elevated in the MOG-treated HOG cell lines compared to the untreated ones. The expression level of STAT-3 was attenuated in both PO3-MOG-treated and only PO3-treated cell lines. On the contrary, in PO3-treated cell lines, MBP, GFAP, and GLAC were significantly expressed at higher levels when compared with the MOG-treated cell lines. Conclusions: The findings reported in this article are to be used as a foundation for further in vivo research in order to pave the way for the possible use of probiotics in the treatment of neuroinflammatory diseases, including multiple sclerosis.
Collapse
Affiliation(s)
- Ashraf Khalifa
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Hairul-Islam Mohamed Ibrahim
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Molecular Biology Division, Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry 605004, India
| | - Abdullah Sheikh
- Camel Research Center, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
2
|
Khalifa A, Ibrahim HIM, Sheikh A. Bacillus subtilis PM5 from Camel Milk Boosts Chicken Immunity and Abrogates Salmonella entertitidis Infections. Microorganisms 2023; 11:1719. [PMID: 37512891 PMCID: PMC10385966 DOI: 10.3390/microorganisms11071719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
With the practice of a successful livestock industry using antibiotics, which has continued for more than five decades, researchers have long been interested in finding alternatives to antibiotics for poultry production. Probiotics can potentially reduce enteric diseases in livestock and enhance their productivity. The aim of this study was to isolate putative probiotics from camel milk and test them against Salmonella infection as well as host immune development. Thirteen different isolates were obtained from six different camel milk samples from dairy farms in Saudi Arabia. Three of the six isolates (PM1, PM2, PM3, PM4, PM5, and PM6) that showed Gram-positive characters reacted negatively to catalase and hemolytic assays. PM1, PM5, and PM6 showed significant nonpolar surface properties (>51% hydrophobic) and potent antimicrobial activities against avian pathogens, namely S. enterica, S. typhi, S. aureus, and E. coli. PM5 exhibited substantial probiotic traits; therefore, further focus was given to it. PM5 was identified as Bacillus subtilis OQ913924 by the 16S rRNA sequencing method and showed similarity matrix > 99%. An in vivo chicken model was used to access the health benefits of probiotics. After salmonella infection, the mucosal immune response was significantly increased (p < 0.01), and none of the challenge protocols caused mortality or clinical symptoms after infection in intestinal contents. S. enterica organ infiltration in the spleen, thymus, and small intestine was significantly reduced in the B. subtilis PM5-fed chickens. The S. enterica load in chicken feces was reduced from CFU 7.2 to 5.2 in oral-fed B. subtilis PM5-fed chickens. Probiotic-fed chickens showed buffered intestinal content and positively regulated the level of butyric acid (p < 0.05), and intestinal interleukin 1 beta (IL1-β), C-reactive protein (CRP), and interferon gamma (IFN-γ) levels were reduced (p < 0.05). In addition, B. subtilis PM5 showed significant binding to peritoneal macrophages cells and inhibited S. enterica surface adhesion, indicating co-aggregation of B. subtilis PM5 in macrophage cells. It could be concluded that supplementation with probiotics can improve the growth performance of broilers and the quality of broiler chickens against enteric pathogens. The introduction of this probiotic into the commercial poultry feed market in the near future may assist in narrowing the gap that now exists between chicken breeding and consumer demand.
Collapse
Affiliation(s)
- Ashraf Khalifa
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Hairul-Islam Mohamed Ibrahim
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Molecular Biology Division, Pondicherry Centre for Biological Sciences and Educational Trust, Pondicherry 605004, India
| | - Abdullah Sheikh
- Camel Research Center, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
3
|
Khalifa A, Sheikh A, Ibrahim HIM. Bacillus amyloliquefaciens Enriched Camel Milk Attenuated Colitis Symptoms in Mice Model. Nutrients 2022; 14:1967. [PMID: 35565934 PMCID: PMC9101272 DOI: 10.3390/nu14091967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
Fermented camel's milk has various health beneficial prebiotics and probiotics. This study aimed to evaluate the preventive efficacy of Bacillus amyloliquefaciens enriched camel milk (BEY) in 2-, 4- and 6-Trinitrobenzenesulfonic acid (TNBS)-induced colitis mice models. To this end, the immune modulatory effects of Bacillus amyloliquefaciens (BA) on TNF-α challenged HT29 colon cells were estimated using the cell proliferation and cytokines ELISA method. BEY was prepared using the incubation method and nutritional value was quantified by comparing it to commercial yogurt. Furthermore, TNBS-induced colitis was established and the level of disease index, pathological scores, and inflammatory markers of BEY-treated mice using macroscopic and microscopic examinations, qPCR and immunoblot were investigated. The results demonstrate that BA is non-toxic to HT29 colon cells and balanced the inflammatory cytokines. BEY reduced the colitis disease index, and improved the body weight and colon length of the TNBS-induced mice. Additionally, Myeloperoxidase (MPO) and pro-inflammatory cytokines (IL1β, IL6, IL8 and TNF-α) were attenuated by BEY treatment. Moreover, the inflammatory progress mRNA and protein markers nuclear factor kappa B (NFκB), phosphatase and tensin homolog (PTEN), proliferating cell nuclear antigen (PCNA), cyclooxygenase-2 (COX-2) and occludin were significantly down-regulated by BEY treatment. Interestingly, significant suppression of PCNA was observed in colonic tissues using the immunohistochemical examination. Treatment with BEY increased the epigenetic (microRNA217) interactions with PCNA. In conclusion, the BEY clearly alleviated the colitis symptoms and in the future could be used to formulate a probiotic-based diet for the host gut health and control the inflammatory bowel syndrome in mammals.
Collapse
Affiliation(s)
- Ashraf Khalifa
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Abdullah Sheikh
- Camel Research Center, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
| | - Hairul Islam Mohamed Ibrahim
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Molecular Biology Division, Pondicherry Centre for Biological Sciences and Educational Trust, Kottakuppam 605104, India
| |
Collapse
|
4
|
Villamil Díaz LM, Esguerra Rodríguez D. Enterococcus, Myroides Y Exiguobacterium: GÉNEROS BACTERIANOS CON POTENCIAL PROBIÓTICO PARA EL CULTIVO DE TILAPIA NILÓTICA (Oreochromis niloticus). ACTA BIOLÓGICA COLOMBIANA 2017. [DOI: 10.15446/abc.v22n3.59974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Se aislaron 120 morfotipos bacterianos de intestino de tilapia y se seleccionaron según su actividad antibacteriana contra patógenos como Aeromonas hydrophila, Streptococcus agalactiae y Edwardsiella tarda, su capacidad de adherencia a mucus intestinal y cinética de crecimiento. Las bacterias seleccionadas se identificaron mediante secuenciación de 16S rRNA y se identificaron como Exigobacterium sp. I9, Enterococcus faecalis I15 y Myroides odoratimimus I19. Además, se evaluó su efecto in vivo sobre el crecimiento de los peces, mediante su adición al alimento de juveniles de Oreochromis niloticus (106 UFC / g, por 15 días). Se determinó la supervivencia luego de un desafío experimental con Edwardsiella tarda por inyección intraperitoneal (100 µL 105 UFC / mL). Las tres bacterias seleccionadas incrementaron la tasa de crecimiento específica, redujeron la mortalidad de los peces durante el desafío experimental con E. tarda y no causaron mortalidad durante la adición en el alimento. Los efectos positivos in vivo se relacionan posiblemente con actividad in vitro; sin embargo, por motivos de bioseguridad se recomienda efectuar estudios posteriores a Exigobacterium sp. I9y E. faecalis I15 dado que se han reportado miembros de este género como causantes de mortalidad en peces, mientras que en el caso de M. odoratimimus I19, es necesario efectuar futuros estudios para verificar su actividad positiva a mayor escala productiva.
Collapse
|
5
|
Liu H, Iwase H, Wijkstrom M, Singh J, Klein E, Wagner R, Humar A, Pasculle W, Cooper DKC. MYROIDES INFECTION IN A BABOON AFTER PROLONGED PIG KIDNEY GRAFT SURVIVAL. Transplant Direct 2015; 1:1-5. [PMID: 26146660 PMCID: PMC4486305 DOI: 10.1097/txd.0000000000000523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/13/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Immunosuppressed patients and experimental nonhuman primates are at risk of opportunistic infection. We report a Myroides spp infection in an immunosuppressed baboon that had received a life-supporting kidney from a genetically-engineered pig. CASE REPORT The baboon received a costimulation blockade-based immunosuppressive regimen as well as two anti-inflammatory agents (tocilizumab and etanercept). Although the pig kidney functioned well, approximately four months after the transplant the baboon became less active and ate and drank poorly. On day 136, it collapsed and died despite inotropic and fluid support. A blood culture drawn before death grew Myroides spp. DISCUSSION AND CONCLUSIONS To our knowledge, Myroides spp has not been reported as a cause of opportunistic infection in either patients with organ allotransplants or experimental animals. We summarize what is known about this rare organism, and suggest it should be considered in any immunocompromised patient or animal. In the present case, we suggest the baboon died of circulatory shock following infection through an indwelling intravenous catheter.
Collapse
Affiliation(s)
- Hong Liu
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA ; Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hayato Iwase
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA
| | - Martin Wijkstrom
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA
| | - Jagjit Singh
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA
| | - Edwin Klein
- Division of Laboratory Animal Resources, University of Pittsburgh, PA, USA
| | - Robert Wagner
- Division of Laboratory Animal Resources, University of Pittsburgh, PA, USA
| | - Abhinav Humar
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA
| | - William Pasculle
- Department of Microbiology, University of Pittsburgh, Pittsburgh, USA
| | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
6
|
Arokiyaraj S, Hairul Islam VI, Bharanidharan R, Raveendar S, Lee J, Kim DH, Oh YK, Kim EK, Kim KH. Antibacterial, anti-inflammatory and probiotic potential of Enterococcus hirae isolated from the rumen of Bos primigenius. World J Microbiol Biotechnol 2014; 30:2111-8. [DOI: 10.1007/s11274-014-1625-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/17/2014] [Indexed: 12/25/2022]
|