1
|
Laddach A, Chng SH, Lasrado R, Progatzky F, Shapiro M, Erickson A, Sampedro Castaneda M, Artemov AV, Bon-Frauches AC, Amaniti EM, Kleinjung J, Boeing S, Ultanir S, Adameyko I, Pachnis V. A branching model of lineage differentiation underpinning the neurogenic potential of enteric glia. Nat Commun 2023; 14:5904. [PMID: 37737269 PMCID: PMC10516949 DOI: 10.1038/s41467-023-41492-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
Glial cells have been proposed as a source of neural progenitors, but the mechanisms underpinning the neurogenic potential of adult glia are not known. Using single cell transcriptomic profiling, we show that enteric glial cells represent a cell state attained by autonomic neural crest cells as they transition along a linear differentiation trajectory that allows them to retain neurogenic potential while acquiring mature glial functions. Key neurogenic loci in early enteric nervous system progenitors remain in open chromatin configuration in mature enteric glia, thus facilitating neuronal differentiation under appropriate conditions. Molecular profiling and gene targeting of enteric glial cells in a cell culture model of enteric neurogenesis and a gut injury model demonstrate that neuronal differentiation of glia is driven by transcriptional programs employed in vivo by early progenitors. Our work provides mechanistic insight into the regulatory landscape underpinning the development of intestinal neural circuits and generates a platform for advancing glial cells as therapeutic agents for the treatment of neural deficits.
Collapse
Affiliation(s)
- Anna Laddach
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Song Hui Chng
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Experimental Drug Development Centre A*STAR 10 Biopolis Road, Chromos, 138670, Singapore
| | - Reena Lasrado
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- COMPASS Pathways PLC, Fora, 33 Broadwick St, London, W1F 0DQ, UK
| | - Fränze Progatzky
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Michael Shapiro
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alek Erickson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Marisol Sampedro Castaneda
- Kinases and Brain Development Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Artem V Artemov
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Bienna, 1090, Austria
- Boehringer Ingelheim RCV, Vienna, Austria
| | - Ana Carina Bon-Frauches
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Eleni-Maria Amaniti
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Sainsbury Wellcome Centre, London, UK
| | - Jens Kleinjung
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Stefan Boeing
- Bioinformatics and Biostatistics Science Technology Platform, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sila Ultanir
- Kinases and Brain Development Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17165, Sweden
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Bienna, 1090, Austria
| | - Vassilis Pachnis
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
2
|
Kozłowska A, Kozera P, Majewski M, Godlewski J. Co-expression of caspase-3 or caspase-8 with galanin in the human stomach section affected by carcinoma. Apoptosis 2019; 23:484-491. [PMID: 30019295 PMCID: PMC6153556 DOI: 10.1007/s10495-018-1470-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neoplastic process may cause distinct changes in the morphology, i.e. size and number of the neurons of the neuronal plexuses forming the enteric nervous system (ENS) of the human intestine. Moreover, it was also reported that these changes were not directly associated with apoptosis. Thus, the main aim of this study was to determine the atrophic changes of myenteric plexuses (MPs) in the vicinity of cancer invasion and the potential reason which may be responsible for these changes if they occur. Tissue samples from the stomach were collected from ten patients which undergo organ resection due to cancer diagnosis. Samples were taken from the margin of cancer invasion and from a macroscopically-unchanged part of the stomach wall. Triple-immunofluorescence staining of the 10-µm-thick cryostat sections was used to visualize the co-expression of caspase-3 (CASP3) or caspase-8 (CASP8) with galanin (GAL) in the MPs of ENS. Microscopic observations of MPs located closely to gastric cancer invasion showed that they were significantly smaller than plexuses located distally. The percentage of neurons containing CASP3 within MPs located close to cancer-affected regions of the stomach was higher, while containing CASP8 was lower compared to the unchanged regions. Additionally, elevated high expression of CASP3 or CASP8 in the neurons from MPs was accompanied by a decreased expression of GAL. To our knowledge, this is the first report describing the decomposition of MPs within cancer-affected human stomach wall and the possible role of apoptosis in this process.
Collapse
Affiliation(s)
- Anna Kozłowska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Av 30, 10-082, Olsztyn, Poland.
| | - Piotr Kozera
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Av 30, 10-082, Olsztyn, Poland
| | - Mariusz Majewski
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Av 30, 10-082, Olsztyn, Poland
| | - Janusz Godlewski
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Av 30, 10-082, Olsztyn, Poland
| |
Collapse
|
3
|
Matsuzaki J, Tsugawa H, Kashiwazaki Y, Mori H, Yamamoto Y, Kameyama H, Masaoka T, Kanai T, Suzuki H. Neutrophil-activating Protein Polymorphism of Helicobacter pylori Determines the Host Risk of Dyspepsia. Cell Mol Gastroenterol Hepatol 2019; 8:295-297.e6. [PMID: 31108232 PMCID: PMC6718361 DOI: 10.1016/j.jcmgh.2019.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 05/05/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Juntaro Matsuzaki
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hitoshi Tsugawa
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Kashiwazaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hideki Mori
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan,Department of Gastroenterology, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Yuta Yamamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hisako Kameyama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuhiro Masaoka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hidekazu Suzuki
- Department of Gastroenterology and Hepatology, Tokai University School of Medicine, Isehara, Kanagawa, Japan,Corresponding author.
| |
Collapse
|
4
|
Chen Y, Liu G, He F, Zhang L, Yang K, Yu H, Zhou J, Gan H. MicroRNA 375 modulates hyperglycemia-induced enteric glial cell apoptosis and Diabetes-induced gastrointestinal dysfunction by targeting Pdk1 and repressing PI3K/Akt pathway. Sci Rep 2018; 8:12681. [PMID: 30140011 PMCID: PMC6107553 DOI: 10.1038/s41598-018-30714-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023] Open
Abstract
Diabetic neuropathy can damage systemic nervous system, including alteration of enteric nervous system and subsequent gastrointestinal dysfunction. The effect of diabetes on enteric glia cell (EGC) is not clear. We investigated the effect of diabetes and hyperglycemia on EGC, and the role of microRNA375 in modulating EGC survival in vivo and in vitro. Streptozotocin-induced diabetic mice were intraperitoneally injected with microRNA375 inhibitor or its negative control. EGC was transfected with microRNA375 inhibitor or its mimic. Diabetes mice with gastrointestinal dysfunction showed increased apoptosis of EGC (no difference in cell numbers) and gene expression of micorRNA375 in the myenteric plexus. Hyperglycemia triggered apoptosis of EGC in vitro with decreased expression of Pdk1 and p-Akt, but increased expression of micorRNA375. MicorRNA375 mimic induced apoptosis of EGC in vitro with repressed Pdk1and p-Akt. MicorRNA375 inhibitor could both prevent hyperglycemia-induced apoptosis of EGC in vitro and diabetes-induced gastrointestinal dysfunction in vivo. Our results suggest that diabetes-induced gastrointestinal dysfunction is related to increased apoptosis of EGC in the myenteric plexus. Hyperglycemia can increase the expression of microRNA375 and damage EGC survival through PI3K/Akt pathway. MicroRNA375 specific inhibition can prevent hyperglycemia induced EGC damage and diabetes-induced gastrointestinal dysfunction.
Collapse
Affiliation(s)
- Yan Chen
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gongxiang Liu
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fuqian He
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Zhang
- Department of elderly digestive, Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Kun Yang
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huan Yu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinqiu Zhou
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huatian Gan
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|