1
|
Wu Y, Zhang J, Zhao J, Wang B. Folate-modified liposomes mediate the co-delivery of cisplatin with miR-219a-5p for the targeted treatment of cisplatin-resistant lung cancer. BMC Pulm Med 2024; 24:159. [PMID: 38561695 PMCID: PMC10986081 DOI: 10.1186/s12890-024-02938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Cisplatin (DDP) resistance, often leading to first-line chemotherapy failure in non-small cell lung cancer (NSCLC), poses a significant challenge. MiR-219a-5p has been reported to enhance the sensitivity of human NSCLC to DDP. However, free miR-219a-5p is prone to degradation by nucleases in the bloodstream, rendering it unstable. In light of this, our study developed an efficient nanodrug delivery system that achieved targeted delivery of DDP and miR-219a-5p by modifying liposomes with folate (FA). Based on the results of material characterization, we successfully constructed a well-dispersed and uniformly sized (approximately 135.8 nm) Lipo@DDP@miR-219a-5p@FA nanodrug. Agarose gel electrophoresis experiments demonstrated that Lipo@DDP@miR-219a-5p@FA exhibited good stability in serum, effectively protecting miR-219a-5p from degradation. Immunofluorescence and flow cytometry experiments revealed that, due to FA modification, Lipo@DDP@miR-219a-5p@FA could specifically bind to FA receptors on the surface of tumor cells (A549), thus enhancing drug internalization efficiency. Safety evaluations conducted in vitro demonstrated that Lipo@DDP@miR-219a-5p@FA exhibited no significant toxicity to non-cancer cells (BEAS-2B) and displayed excellent blood compatibility. Cellular functional experiments, apoptosis assays, and western blot demonstrated that Lipo@DDP@miR-219a-5p@FA effectively reversed DDP resistance in A549 cells, inhibited cell proliferation and migration, and further promoted apoptosis. In summary, the Lipo@DDP@miR-219a-5p@FA nanodrug, through specific targeting of cancer cells and reducing their resistance to DDP, significantly enhanced the anti-NSCLC effects of DDP in vitro, providing a promising therapeutic option for the clinical treatment of NSCLC.
Collapse
Affiliation(s)
- Yuanlin Wu
- Department of Thoracic Surgery, Shaoxing People's Hospital, No.568 Zhongxing North Road, 312000, Shaoxing, Zhejiang, China
| | - Jiandong Zhang
- Department of Thoracic Surgery, Shaoxing People's Hospital, No.568 Zhongxing North Road, 312000, Shaoxing, Zhejiang, China
| | - Junjun Zhao
- Department of Thoracic Surgery, Shaoxing People's Hospital, No.568 Zhongxing North Road, 312000, Shaoxing, Zhejiang, China
| | - Bin Wang
- Department of Thoracic Surgery, Shaoxing People's Hospital, No.568 Zhongxing North Road, 312000, Shaoxing, Zhejiang, China.
| |
Collapse
|
2
|
Zhu SF, Yuan W, Du YL, Wang BL. Research progress of lncRNA and miRNA in hepatic ischemia-reperfusion injury. Hepatobiliary Pancreat Dis Int 2023; 22:45-53. [PMID: 35934611 DOI: 10.1016/j.hbpd.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/18/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatic ischemia-reperfusion injury (HIRI) is a common complication of liver surgeries, such as hepatectomy and liver transplantation. In recent years, several non-coding RNAs (ncRNAs) including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been identified as factors involved in the pathological progression of HIRI. In this review, we summarized the latest research on lncRNAs, miRNAs and the lncRNA-miRNA regulatory networks in HIRI. DATA SOURCES The PubMed and Web of Science databases were searched for articles published up to December 2021 using the following keywords: "hepatic ischemia-reperfusion injury", "lncRNA", "long non-coding RNA", "miRNA" and "microRNA". The bibliography of the selected articles was manually screened to identify additional studies. RESULTS The mechanism of HIRI is complex, and involves multiple lncRNAs and miRNAs. The roles of lncRNAs such as AK139328, CCAT1, MALAT1, TUG1 and NEAT1 have been established in HIRI. In addition, numerous miRNAs are associated with apoptosis, autophagy, oxidative stress and cellular inflammation that accompany HIRI pathogenesis. Based on the literature, we conclude that four lncRNA-miRNA regulatory networks mediate the pathological progression of HIRI. Furthermore, the expression levels of some lncRNAs and miRNAs undergo significant changes during the progression of HIRI, and thus are potential prognostic markers and therapeutic targets. CONCLUSIONS Complex lncRNA-miRNA-mRNA networks regulate HIRI progression through mutual activation and antagonism. It is necessary to screen for more HIRI-associated lncRNAs and miRNAs in order to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Shan-Fei Zhu
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Wei Yuan
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Yong-Liang Du
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Bai-Lin Wang
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China.
| |
Collapse
|
3
|
LncRNA SNHG7 Knockdown Aggravates Hepatic Ischemia–Reperfusion Injury and Promotes Apoptosis in Hemorrhagic Shock Pregnant Rats by Modulating miR-34a-5p/YWHAG Axis. Mol Biotechnol 2022; 65:983-996. [DOI: 10.1007/s12033-022-00613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022]
|
4
|
Sun Q, Gong J, Wu J, Hu Z, Zhang Q, Zhu X. SNHG1-miR-186-5p-YY1 feedback loop alleviates hepatic ischemia/reperfusion injury. Cell Cycle 2022; 21:1267-1279. [PMID: 35275048 PMCID: PMC9132488 DOI: 10.1080/15384101.2022.2046984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/20/2021] [Accepted: 02/23/2022] [Indexed: 11/03/2022] Open
Abstract
As a common cause of liver injury, hepatic ischemia/reperfusion injury (HIRI) happens in various clinical conditions including trauma, hepatectomy and liver transplantation. Since transcription factor Yin Yang 1 (YY1) was reported to be downregulated after ischemia/reperfusion (I/R) injury, we focused on YY1 to explore its function in HIRI by functional assays like Cell Counting Kit-8 (CCK-8) assays and flow cytometry assays. The RT-qPCR assay revealed that YY1 was downregulated in hepatocytes after I/R injury. The function assays disclosed that YY1 facilitated cell viability and proliferation, but hindered cell apoptosis in hepatocytes after I/R injury. Through mechanism assays including luciferase reporter assay, RIP and RNA pulldown assay, miR-186-5p was found to bind with YY1 and promote hepatocyte apoptosis by targeting YY1. Subsequently, we verified that small nucleolar RNA host gene 1 (SNHG1) could sponge miR-186-5p to upregulate YY1. Importantly, we figured out that YY1 had a positive regulation on SNHG1. Along the way, YY1 was identified as the upstream transcription factor for SNHG1. In conclusion, our study unveiled a novel competing endogenous RNA (ceRNA) pattern of SNHG1/miR-186-5p/YY1 positive feedback loop in hepatic I/R injury, which might provide new insight into prevention of HIRI during liver transplantation or hepatic surgery.
Collapse
Affiliation(s)
- Qiang Sun
- General Surgery Department 1, Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Jinlong Gong
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianlong Wu
- General Surgery Department 1, Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Zhipeng Hu
- General Surgery Department 1, Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Qiao Zhang
- General Surgery Department 1, Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Xiaofeng Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Ji H, Li H, Zhang H, Cheng Z. Role of microRNA‑218‑5p in sevoflurane‑induced protective effects in hepatic ischemia/reperfusion injury mice by regulating GAB2/PI3K/AKT pathway. Mol Med Rep 2021; 25:1. [PMID: 34726254 PMCID: PMC8600399 DOI: 10.3892/mmr.2021.12517] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatic ischemia/reperfusion (I/R) injury (HIRI) often occurs following tissue resection, hemorrhagic shock or transplantation surgery. Previous investigations showed that sevoflurane (Sevo), an inhalation anesthetic, had protective properties against different organ damage in animal models including HIRI. This study is aimed to investigate the underlying mechanisms involved in the protective effects of Sevo on HIRI. The present study results showed that treatment with Sevo improved histologic damage, inflammatory response, oxidative stress and apoptosis after hepatic I/R, indicating the protective role of Sevo against liver I/R injury. Importantly, in order to determine the molecular mechanism of Sevo in HIRI, the focus of the study was on microRNA (miR) regulation. By retrieving the microarray data in the Gene Expression Omnibus dataset (GSE72315), miR-218-5p was found to be significantly downregulated by Sevo. Moreover, miR-218-5p overexpression using agomiR-218-5p reversed the protective roles of Sevo against HIRI. Furthermore, GAB2, a positive regulator of PI3K/AKT signaling pathway, was found as a target gene of miR-218-5p. It was also found that the Sevo-mediated protective effects may be dependent on the activation of GAB2/PI3K/AKT. Collectively, these data revealed that Sevo alleviated HIRI in mice by restraining apoptosis, relieving oxidative stress and inflammatory response through the miR-218-5p/GAB2/PI3K/AKT pathway, which helps in understanding the novel mechanism of the hepatic-protection of Sevo.
Collapse
Affiliation(s)
- Hui Ji
- Department of Anesthesiology, Xinhua Hospital, Chongming Branch, Shanghai 202150, P.R. China
| | - Hui Li
- Department of Anesthesiology, Xinhua Hospital, Chongming Branch, Shanghai 202150, P.R. China
| | - Haixia Zhang
- Department of Anesthesiology, Xinhua Hospital, Chongming Branch, Shanghai 202150, P.R. China
| | - Zhijun Cheng
- Department of Anesthesiology, Xinhua Hospital, Chongming Branch, Shanghai 202150, P.R. China
| |
Collapse
|
6
|
The Interplay between Autophagy and NLRP3 Inflammasome in Ischemia/Reperfusion Injury. Int J Mol Sci 2021; 22:ijms22168773. [PMID: 34445481 PMCID: PMC8395601 DOI: 10.3390/ijms22168773] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/29/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury is characterized by a limited blood supply to organs, followed by the restoration of blood flow and reoxygenation. In addition to ischemia, blood flow recovery can also lead to very harmful injury, especially inflammatory injury. Autophagy refers to the transport of cellular materials to the lysosomes for degradation, leading to the conversion of cellular components and offering energy and macromolecular precursors. It can maintain the balance of synthesis, decomposition and reuse of the intracellular components, and participate in many physiological processes and diseases. Inflammasomes are a kind of protein complex. Under physiological and pathological conditions, as the cellular innate immune signal receptors, inflammasomes sense pathogens to trigger an inflammatory response. TheNLRP3 inflammasome is the most deeply studied inflammasome and is composed of NLRP3, the adaptor apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and pro-caspase-1. Its activation triggers the cleavage of pro-interleukin (IL)-1β and pro-IL-18 mediated by caspase-1 and promotes a further inflammatory process. Studies have shown that autophagy and the NLRP3 inflammasome play an important role in the process of I/R injury, but the relevant mechanisms have not been fully explained, especially how the interaction between autophagy and the NLRP3 inflammasome participates in I/R injury, which remains to be further studied. Therefore, we reviewed the recent studies about the interplay between autophagy and the NLRP3 inflammasome in I/R injury and analyzed the mechanisms to provide the theoretical references for further research in the future.
Collapse
|
7
|
Zhao S, Wang H. EVA1A Plays an Important Role by Regulating Autophagy in Physiological and Pathological Processes. Int J Mol Sci 2021; 22:ijms22126181. [PMID: 34201121 PMCID: PMC8227468 DOI: 10.3390/ijms22126181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Eva-1 homolog A (EVA1A) is regarded as TMEM166 (transmembrane protein 166) or FAM176A (family with sequence similarity 176) and a lysosome and endoplasmic reticulum-associated protein involved in regulating autophagy and apoptosis. EVA1A regulates embryonic neurogenesis, cardiac remodeling, islet alpha-cell functions, acute liver failure, and hepatitis B virus replication. However, the related mechanisms are not fully clear. Autophagy is a process in which cells transfer pathogens, abnormal proteins and organelles to lysosomes for degradation. It plays an important role in various physiological and pathological processes, including cancer, aging, neurodegeneration, infection, heart disease, development, cell differentiation and nutritional starvation. Recently, there are many studies on the important role of EVA1A in many physiological and pathological processes by regulating autophagy. However, the related molecular mechanisms need further study. Therefore, we summarize the above-mentioned researches about the role of EVA1A in physiological and pathological processes through regulating autophagy in order to provide theoretical basis for future researches.
Collapse
|
8
|
Zhou L, Yang X, Shu S, Wang S, Guo F, Yin Y, Zhou W, Han H, Chai X. Sufentanil Protects the Liver from Ischemia/Reperfusion-Induced Inflammation and Apoptosis by Inhibiting ATF4-Induced TP53BP2 Expression. Inflammation 2021; 44:1160-1174. [PMID: 33751357 DOI: 10.1007/s10753-020-01410-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 12/18/2022]
Abstract
Liver ischemia-reperfusion (I/R) injury is a pathological process that often occurs during liver and trauma surgery. This study aimed to investigate the protective effect and potential mechanisms of sufentanil on hepatic I/R injury. I/R rat model and hypoxic/reoxygenation (H/R)-induced buffalo rat liver (BRL)-3A cell model were established. Following pretreatment with sufentanil, the enzymatic activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in rat serum and the changes of hepatic histopathology were evaluated to track the extent of liver injury. The levels of inflammatory factors were determined with ELISA kits and RT-qPCR. The infiltration of macrophages was assessed after detecting monocyte chemoattractant protein 1 (MCP-1) and F4/80 expression. Additionally, apoptosis was measured by means of TUNEL staining, and gene expression related to apoptosis was examined using RT-qPCR and western blotting. Then, TP53BP2 was overexpressed in BRL-3A cells exposed to H/R condition to evaluate whether sufentanil defended the liver against injury by regulating TP53BP2 expression. Moreover, the potential binding site of ATF4 on the TP53BP2 promoter was analyzed using JASPAR databases and verified by chromosomal immunoprecipitation (ChIP) assay. Furthermore, TP53BP2 expression and endoplasmic reticulum stress (ERS)-related protein levels were determined after ATF4 was overexpressed in sufentanil-treated BRL-3A cells. Results revealed that sufentanil significantly improved hepatic I/R injury, decreased the levels of inflammatory factors, and alleviated hepatocyte apoptosis. Notably, upregulated TP53BP2 expression was observed in hepatic tissues, and TP53BP2 overexpression markedly reversed the protective effects of sufentanil on the inflammation and apoptosis in H/R-stimulated BRL-3A cells. Additionally, ATF4 was confirmed to combine with the TP53BP2 promoter. ATF4 upregulation attenuated the inhibitory effects of sufentanil on the expression of TP53BP2 and ERS-associated proteins. These findings demonstrated that sufentanil protects the liver from inflammation and apoptosis injury induced by I/R by inhibiting ATF4 expression and further suppressing TP53BP2 expression, suggesting a promising therapeutic candidate for the treatment of liver I/R injury.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China
| | - Xinlu Yang
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China
| | - Shuhua Shu
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China
| | - Sheng Wang
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China
| | - Fenglin Guo
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China
| | - Ying Yin
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China
| | - Weide Zhou
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China
| | - Han Han
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China
| | - Xiaoqing Chai
- Department of Anesthesiology, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, 17 Lujiang Road, Hefei, 230000, Anhui, China.
| |
Collapse
|
9
|
Shang J, Sun S, Zhang L, Hao F, Zhang D. miR-211 alleviates ischaemia/reperfusion-induced kidney injury by targeting TGFβR2/TGF-β/SMAD3 pathway. Bioengineered 2021; 11:547-557. [PMID: 32375588 PMCID: PMC8291827 DOI: 10.1080/21655979.2020.1765501] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MicroRNA-211 (miR-211) is closely related to apoptosis and plays an important role in ischemia/reperfusion (I/R) injury. Whether miR-211 is involved in the protective effects in renal I/R injury is unknown. In this study, we evaluated the role of miR-211 in human tubular epithelial cells in response to hypoxia-reoxygenation (H/R) stimulation and I/R injury in vitro and in vivo. The results revealed that miR-211 was down-regulated and TGFβR2 was up-regulated in human kidney (HK-2) cells subjected to H/R. Luciferase reporter assay showed that TGFβR2 was a direct target of miR-211. Enforced miR-211 expression decreased H/R-induced HK-2 cell apoptosis and increased cell viability, and targeting miR-211 further increased H/R-induced HK-2 cell apoptosis and decreased cell viability. However, the effect of miR-211 was reversed by targeting TGFβR2 or enforced TGFβR2 expression in miR-211 overexpressing cells or miR-211 downexpressing cells. Moreover, we confirmed that miR-211 interacted with TGFβR2, and regulating TGF-β/SMAD3 signal. In vivo in mice, miR-211 overexpression ameliorates biochemical and histological kidney injury, reduces apoptosis in mice following I/R. On the contrary, miR-211 downexpressing promoted histological kidney injury and increased apoptosis in mice following I/R. Inhibition of miR-211 or miR-211 overexpression inhibited TGF-β/SMAD3 pathways or activated TGF-β/SMAD3 signal pathways in vitro and in vivo, which are critical for cell survival. Our findings suggested that miR-211 suppress apoptosis and relieve kidney injury following H/R or I/R via targeting TGFβR2/TGF-β/SMAD3 signals. Therefore, miR-211 may be as therapeutic potential for I/R- induced kidney injury.
Collapse
Affiliation(s)
- Jinchun Shang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shukai Sun
- Department of Clinical Lab, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lin Zhang
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fengyun Hao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Dianlong Zhang
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
10
|
Li Y, Xing N, Yuan J, Yang J. Sevoflurane attenuates cardiomyocyte apoptosis by mediating the miR-219a/AIM2/TLR4/MyD88 axis in myocardial ischemia/reperfusion injury in mice. Cell Cycle 2020; 19:1665-1676. [PMID: 32449438 DOI: 10.1080/15384101.2020.1765512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Myocardial infarction (MI) is a vital cause of death and disability globally. The primary treatment for diminishing acute myocardial ischemic injury is myocardial reperfusion, which may induce cardiomyocyte death. Our aim is to unravel the mechanism of sevoflurane (Sev) in microRNA-219a (miR-219a)-mediated regulation of absent in melanoma 2 (AIM2) and TLR4/MyD88 pathway during myocardial ischemia/reperfusion (I/R). The area of MI and apoptosis of cardiomyocytes of the developed mouse model were evaluated by TTC staining and TUNEL, respectively. After the determination of miR-219a as our target using microarray analysis, miR-219a atagomiR was used to treat the mouse model. The luciferase assay verified whether miR-219a targeted AIM2, and the miR-219a and AIM2 expression in myocardial tissues was detected by RT-qPCR and Western blot. miR-219a was significantly increased in myocardial tissues from mice treated with Sev, and the area of MI and cardiomyocyte apoptosis were decreased as a consequence. The miR-219a inhibitor reversed the action of Sev. Moreover, overexpression of AIM2 or induction of the TLR4 pathway aggravated myocardial I/R injury alleviated by miR-219a. All in all, the treatment of Sev upregulated miR-219a expression, which blocked the TLR4 pathway by targeting AIM2 and attenuated cardiomyocyte apoptosis in myocardial I/R mouse model.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University , ZhengZhou, Henan, P.R. China
| | - Na Xing
- Department of Anesthesiology Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University , ZhengZhou, Henan, P.R. China
| | - Jingjing Yuan
- Department of Anesthesiology Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University , ZhengZhou, Henan, P.R. China
| | - Jianjun Yang
- Department of Anesthesiology Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University , ZhengZhou, Henan, P.R. China
| |
Collapse
|
11
|
Lu MY, Wu JR, Liang RB, Wang YP, Zhu YC, Ma ZT, Zhang H, Zan J, Tan W. Upregulation of miR-219a-5p Decreases Cerebral Ischemia/Reperfusion Injury In Vitro by Targeting Pde4d. J Stroke Cerebrovasc Dis 2020; 29:104801. [PMID: 32249206 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/23/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ischemic stroke is the leading cause of disability and death globally. Micro-RNAs (miRNAs) have been reported to play important roles in the development and pathogenesis of the nervous system. However, the exact function and mechanism of miRNAs have not been fully elucidated about brain damage caused by cerebral ischemia/reperfusion (I/R). METHODS In this study, we explored the neuroprotective effects of miR-219a-5p on brain using an in vitro ischemia model (mouse neuroblastoma N2a cells treated with oxyglucose deprivation and reperfusion), and in vivo cerebral I/R model in mice. Western blot assay and Reverse Transcription-Polymerase Chain Reaction were used to check the expression of molecules involved. Flow cytometry and cholecystokinin were used to examine cell apoptosis, respectively. RESULTS Our research shows that miR-219a-5p gradually decreases in cerebral I/R models in vivo and in vitro. In vitro I/R, we find that miR-219a-5p mimics provided evidently protection for cerebral I/R damage, as shown by increased cell viability and decreased the release of LDH and cell apoptosis. Mechanically, our findings indicate that miR-219a-5p binds to cAMP specific 3', 5'-cyclic phosphodiesterase 4D (PDE4D) mRNA in the 3'-UTR region, which subsequently leads to a decrease in Pde4d expression in I/R N2a cells. CONCLUSIONS Our results provide new ideas for the study of the mechanism of cerebral ischemia/reperfusion injury, and lay the foundation for further research on the treatment of brain I/R injury. Upregulation of miR-219a-5p decreases cerebral ischemia/reperfusion injury by targeting Pde4d in vitro.
Collapse
Affiliation(s)
- Min-Yi Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Jin-Rong Wu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Rui-Bing Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Yu-Peng Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - You-Cai Zhu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Zi-Ting Ma
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Hao Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Wen Tan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|