1
|
Ghorbanzadeh S, Pourghasem N, Amiz R, Afsa M, Malekzadeh K. Investigating the Association between LncRNA NR2F2-AS1, miR-320b, and BMI1 in Gastric Cancer: Insights into Expression Profiles as Potential Biomarkers for Disease Management. Microrna 2024; 13:211-224. [PMID: 38952161 DOI: 10.2174/0122115366291818240606112725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 07/03/2024]
Abstract
AIM This study aims to investigate the potential role of lncRNA NR2F2-AS1 in the development of gastric cancer by affecting the levels of miR-320b and BMI1. BACKGROUND Gastric cancer is a high-mortality malignancy, and understanding the underlying molecular mechanisms is crucial. Non-coding RNAs play an important role in gene expression, and their dysregulation can lead to tumor initiation and progression. OBJECTIVE This study aims to determine the pathological role of LncRNA NR2F2-AS1 in gastric cancer progression and its association with the clinicopathological characteristics of patients. METHODS Bioinformatics databases were used to predict the expression levels and interactions between the studied factors to achieve this objective. The expression pattern of NR2F2-AS1/miR- 320b/BMI1 in 40 pairs of tumor and adjacent normal tissues was examined using RT-PCR, IHC, and western blot. The correlation, ROC curve, and survival analyses were also conducted for the aforementioned factors. RESULTS The results showed an increase of more than 2-fold for BMI-1 and lncRNA NR2F2-AS1 in lower stages, and the elevation continued with the increasing stage of the disease. This correlated with significant downregulation of miR-320b and PTEN, indicating their association with gastric cancer progression and decreased patient survival. LncRNA NR2F2-AS1 acts as an oncogene by influencing the level of miR-320b, altering the amount of BMI1. A reduction in the amount of miR-320b against lncRNA NR2F2-AS1 and BMI1 directly correlates with a reduced overall survival rate of patients, especially if this disproportion is more than 3.0. ROC curve analysis indicated that alteration in the lncRNA NR2F2-AS1 level showed more than 98.0% sensitivity and specificity to differentiate the lower from higher stages of GC and predict the early onset of metastasis. CONCLUSION In conclusion, these results suggest that NR2F2-AS1/miR-320b/BMI1 has the potential to be a prognostic as well as diagnostic biomarker for gastric cancer.
Collapse
Affiliation(s)
- Shadi Ghorbanzadeh
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Diagnostic Department; Day Clinical Pathology Laboratory, Tabriz. Iran
| | - Navid Pourghasem
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Roghayeh Amiz
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Masoomeh Afsa
- Hormozgan Health Institute; Hormozgan University of Medical Sciences; Bandar Abbas; Iran
| | - Kianoosh Malekzadeh
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Hormozgan Health Institute; Hormozgan University of Medical Sciences; Bandar Abbas; Iran
| |
Collapse
|
2
|
Liang XR, Liu YF, Chen F, Zhou ZX, Zhang LJ, Lin ZJ. Cell Cycle-Related lncRNAs as Innovative Targets to Advance Cancer Management. Cancer Manag Res 2023; 15:547-561. [PMID: 37426392 PMCID: PMC10327678 DOI: 10.2147/cmar.s407371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are non-coding RNAs (ncRNAs) longer than 200nt. They have complex biological functions and take part in multiple fundamental biological processes, such as cell proliferation, differentiation, survival and apoptosis. Recent studies suggest that lncRNAs modulate critical regulatory proteins involved in cancer cell cycle, such as cyclin, cell cycle protein-dependent kinases (CDK) and cell cycle protein-dependent kinase inhibitors (CKI) through different mechanisms. To clarify the role of lncRNAs in the regulation of cell cycle will provide new ideas for design of antitumor therapies which intervene with the cell cycle progression. In this paper, we review the recent studies about the controlling of lncRNAs on cell cycle related proteins such as cyclin, CDK and CKI in different cancers. We further outline the different mechanisms involved in this regulation and describe the emerging role of cell cycle-related lncRNAs in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Xiao-Ru Liang
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, People’s Republic of China
| | - Yan-Fei Liu
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, People’s Republic of China
| | - Feng Chen
- Department of General Surgery, Weifang Traditional Chinese Hospital, Weifang, Shandong, People’s Republic of China
| | - Zhi-Xia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| | - Li-Jie Zhang
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, People’s Republic of China
| | - Zhi-Juan Lin
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, People’s Republic of China
| |
Collapse
|
3
|
Long non-coding RNA NR2F2-AS1: its expanding oncogenic roles in tumor progression. Hum Cell 2022; 35:1355-1363. [PMID: 35796938 DOI: 10.1007/s13577-022-00733-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/01/2022] [Indexed: 11/04/2022]
Abstract
Long non-coding RNA (LncRNA) is a new type of non-coding RNA whose transcription is more than 200 nucleotides in length and can be up to 100 kb. The crucial regulatory function of lncRNAs in different cellular processes is now notable in many human diseases, especially in different steps of tumorigenesis, making them clinically significant. This research tried to collect all evidence obtained so far regarding Nuclear Receptor subfamily 2 group F member 2 Antisense RNA 1 (NR2F2-AS1) to explore its role in carcinogenesis and molecular mechanism in several cancers. Collecting evidence value an oncogenic role for NR2F2-AS1, whose dysregulation changes the status for cancerous cells to gain the supremacy toward cellular proliferation, dissemination, and ultimately migration. The NR2F2-AS1 acts as competitive endogenous RNA (ceRNA) and contains several microRNA response elements (MREs) for different microRNAs involved in various pathways such as PI3K/AKT, Wnt/β-catenin, and TGF-β. This clinically makes NR2F2-AS1 a remarkable lncRNA which contributes to cancer progression and invasion and perhaps could be a candidate as a prognostic marker or even a therapeutic target.
Collapse
|
4
|
Potentials of long non-coding RNAs as biomarkers of colorectal cancer. Clin Transl Oncol 2022; 24:1715-1731. [PMID: 35581419 DOI: 10.1007/s12094-022-02834-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor worldwide and the fourth major cause of cancer-related death, with high morbidity and increased mortality year by year. Although significant progress has been made in the therapy strategies for CRC, the great difficulty in early diagnosis, feeble susceptibility to radiotherapy and chemotherapy, and high recurrence rates have reduced therapeutic efficacy resulting in poor prognosis. Therefore, it is urgent to understand the pathogenesis of CRC and unravel novel biomarkers to improve the early diagnosis, treatment and prediction of CRC recurrence. Long non-coding RNAs (lncRNAs) are non-coding RNAs with a length of more than 200 nucleotides, which are abnormally expressed in tumor tissues and cell lines, activating or inhibiting specific genes through multiple mechanisms including transcription and translation. A growing number of studies have shown that lncRNAs are important regulators of microRNAs (miRNAs, miRs) expression in CRC and may be promising biomarkers and potential therapeutic targets in the research field of CRC. This review mainly summarizes the potential application value of lncRNAs as novel biomarkers in CRC diagnosis, radiotherapy, chemotherapy and prognosis. Additionally, the significance of lncRNA SNHGs family and lncRNA-miRNA networks in regulating the occurrence and development of CRC is mentioned, aiming to provide some insights for understanding the pathogenesis of CRC and developing new diagnostic and therapeutic strategies.
Collapse
|
5
|
Guo H, Lin S, Gan Z, Xie J, Zhou J, Hu M. lncRNA FOXD3-AS1 promotes the progression of non-small cell lung cancer by regulating the miR-135a-5p/CDK6 axis. Oncol Lett 2021; 22:853. [PMID: 34733371 PMCID: PMC8561623 DOI: 10.3892/ol.2021.13114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 06/22/2021] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNA (lncRNA) is essential to the development and progression of malignant human cancer. Growing evidence suggests that the lncRNA forkhead box D3 antisense 1 (FOXD3-AS1) is a crucial regulatory effector for multiple cancer types and is closely associated with poor prognosis. However, in most cases, the molecular mechanism underlying the role of FOXD3-AS1 in cancer development has not yet been fully elucidated. The present study focused on non-small cell lung cancer (NSCLC) in order to gain insight into how FOXD3-AS1 drives cancer progression. First, FOXD3-AS1 expression in NSCLC tissue samples was detected using reverse transcription-quantitative (RT-qPCR). Moreover, cell proliferation and apoptosis were determined using Cell Counting Kit-8 assays and flow cytometry, respectively. A luciferase reporter assay was then performed to determine whether there was a direct binding association between FOXD3-AS1 and microRNA (miR)-135a-5p. Lastly, a tumor subcutaneous xenograft model was established to examine the role of FOXD3-AS1 in tumor growth. FOXD3-AS1 was significantly overexpressed in NSCLC tissue samples and cell lines compared with normal tissue samples and cells. FOXD3-AS1 silencing expression significantly inhibited A549 and H1229 cell proliferation while inducing apoptosis compared with sh-NC group. The luciferase reporter assay demonstrated the direct binding interaction between FOXD3-AS1 and miR-135a-5p. Moreover, FOXD3-AS1 silencing led to the upregulation of miR-135a-5p in A549 and H1229 cells compared with sh-NC group. It was also demonstrated that miR-135a-5p could bind to the 3′ untranslated region of cyclin-dependent kinase 6 (CDK6) and negatively modulate its transcription. miR-135a-5p knockdown or CDK6 overexpression reversed the inhibition on cell proliferation and apoptosis following FOXD3-AS1 knockdown. Altogether, the present study suggests that FOXD3-AS1 sponges miR-135a-5p to promote cell proliferation and concomitantly inhibit apoptosis by regulating CDK6 expression in NSCLC cells.
Collapse
Affiliation(s)
- Haiyan Guo
- Department of Respiratory Medicine, People's Hospital of Nanhai District (Affiliated Nanhai Hospital of Southern Medical University), Foshan, Guangdong 528200, P.R. China.,Department of Respiratory Medicine, The Sixth Affiliated Hospital, South China University of Technology, Foshan, Guangdong 528200, P.R. China
| | - Shufang Lin
- Department of Respiratory Medicine, People's Hospital of Nanhai District (Affiliated Nanhai Hospital of Southern Medical University), Foshan, Guangdong 528200, P.R. China.,Department of Respiratory Medicine, The Sixth Affiliated Hospital, South China University of Technology, Foshan, Guangdong 528200, P.R. China
| | - Zhenyong Gan
- Department of Respiratory Medicine, People's Hospital of Nanhai District (Affiliated Nanhai Hospital of Southern Medical University), Foshan, Guangdong 528200, P.R. China.,Department of Respiratory Medicine, The Sixth Affiliated Hospital, South China University of Technology, Foshan, Guangdong 528200, P.R. China
| | - Jinglian Xie
- Department of Respiratory Medicine, The Sixth Affiliated Hospital, South China University of Technology, Foshan, Guangdong 528200, P.R. China.,Department of Cardiothoracic Surgery, People's Hospital of Nanhai District (Affiliated Nanhai Hospital of Southern Medical University), Foshan, Guangdong 528200, P.R. China
| | - Jiaming Zhou
- Department of Respiratory Medicine, The Fifth People's Hospital of Nanhai District, Foshan, Guangdong 528200, P.R. China
| | - Ming Hu
- Department of Urology, The Sixth Affiliated Hospital, South China University of Technology, Foshan, Guangdong 528200, P.R. China.,Department of Urology, People's Hospital of Nanhai District (Affiliated Nanhai Hospital of Southern Medical University), Foshan, Guangdong 528200, P.R. China
| |
Collapse
|
6
|
He L, He G. DNM3OS Facilitates Ovarian Cancer Progression by Regulating miR-193a-3p/MAP3K3 Axis. Yonsei Med J 2021; 62:535-544. [PMID: 34027641 PMCID: PMC8149934 DOI: 10.3349/ymj.2021.62.6.535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/08/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Long non-coding RNAs (lncRNAs) are essential regulators in the development of ovarian cancer (OC). Nonetheless, the function of lncRNA DNM3 opposite strand/antisense RNA (DNM3OS) in OC remains unclear. This work aimed to investigate the biological roles and underlying mechanisms of DNM3OS in OC. MATERIALS AND METHODS Quantitative real-time polymerase chain reaction was conducted to examine DNM3OS, microRNA (miR)-193a-3p, and mitogen-activated protein kinase 3 (MAP3K3) mRNA expression in OC tissues and cell lines. Kaplan-Meier survival analysis was employed to analyze the relationship between DNM3OS expression and the prognosis of OC patients. Cell counting kit-8, 5-ethynyl-2'-deoxyuridine, and transwell experiments were conducted to monitor cell proliferation, migration, and invasion, respectively. Western blot was applied to examine epithelial-mesenchymal transition associated protein (E-cadherin and N-cadherin) expression. Luciferase reporter gene and RNA immunoprecipitation experiments were performed to confirm the relationships among DNM3OS, miR-193a-3p, and MAP3K3. Pearson's correlation analysis was adopted to analyze the correlations among DNM3OS, miR-193a-3p, and MAP3K3 mRNA. RESULTS DNM3OS expression was remarkably increased in OC tissues and cell lines, which was associated with the unfavorable prognosis of the patients. DNM3OS overexpression enhanced OC cell proliferation, migration, and invasion; suppressed E-cadherin protein expression; and facilitated N-cadherin protein expression, while the transfection of miR-193a-3p mimics had the opposite effects. DNM3OS directly interacted with miR-193a-3p, and miR-193a-3p targeted MAP3K3 by directly binding to 3'UTR. DNM3OS could up-regulate the expression of MAP3K3 via repressing miR-193a-3p expression. CONCLUSION DNM3OS, as an oncogenic lncRNA, increases the malignancy of OC cells via regulation of an miR-193a-3p/MAP3K3 axis.
Collapse
Affiliation(s)
- Lei He
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Guolin He
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
NR2F2-AS1 accelerates cell proliferation through regulating miR-4429/MBD1 axis in cervical cancer. Biosci Rep 2021; 40:225078. [PMID: 32469064 PMCID: PMC7295628 DOI: 10.1042/bsr20194282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is one of the most frequent malignant tumors in female. Increasing studies have demonstrated that long noncoding RNAs (lncRNAs) play a key role in the development of multiple cancers. Although some studies have confirmed that lncRNA NR2F2 antisense RNA 1 (NR2F2-AS1) is a pro-cancer gene in many cancers, the molecular mechanism of NR2F2-AS1 in cervical cancer has not been completely elucidated. In the present study, our results revealed that NR2F2-AS1 expression was up-regulated in cervical cancer tissues and cells, notably in patients with advanced cervical cancer. NR2F2-AS1 accelerated progression of cervical cancer by facilitating cell proliferation, migration, invasion, and EMT process, but inhibiting cell apoptosis. Moreover, NR2F2-AS1 acted as a molecular sponge of miR-4429 and methyl-CpG-binding domain protein 1 (MBD1) was a downstream target of miR-4429 in cervical cancer. Furthermore, there was a negative correlation between miR-4429 expression and NR2F2-AS1 or MBD1 expression in tumor tissues. Rescue experiments confirmed that MBD1 overexpression partly rescued NR2F2-AS1 knockdown-mediated inhibition of progression in cervical cancer. To sum up, these results suggested the potential mechanism of NR2F2-AS1 in cervical cancer and revealed that NR2F2-AS1 exerted its carcinogenic effect via regulating miR-4429/MBD1 axis, indicating a promising insight into the therapeutic target of cervical cancer.
Collapse
|
8
|
Ghafouri-Fard S, Shoorei H, Anamag FT, Taheri M. The Role of Non-Coding RNAs in Controlling Cell Cycle Related Proteins in Cancer Cells. Front Oncol 2020; 10:608975. [PMID: 33330110 PMCID: PMC7734207 DOI: 10.3389/fonc.2020.608975] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cell cycle is regulated by a number of proteins namely cyclin-dependent kinases (CDKs) and their associated cyclins which bind with and activate CDKs in a phase specific manner. Additionally, several transcription factors (TFs) such as E2F and p53 and numerous signaling pathways regulate cell cycle progression. Recent studies have accentuated the role of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in the regulation of cell cycle. Both lncRNAs and miRNAs interact with TFs participating in the regulation of cell cycle transition. Dysregulation of cell cycle regulatory miRNAs and lncRNAs results in human disorders particularly cancers. Understanding the role of lncRNAs, miRNAs, and TFs in the regulation of cell cycle would pave the way for design of anticancer therapies which intervene with the cell cycle progression. In the current review, we describe the role of lncRNAs and miRNAs in the regulation of cell cycle and their association with human malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|