1
|
Liu R, Wu J, Guo H, Yao W, Li S, Lu Y, Jia Y, Liang X, Tang J, Zhang H. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e292. [PMID: 37220590 PMCID: PMC10200003 DOI: 10.1002/mco2.292] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Histones are DNA-binding basic proteins found in chromosomes. After the histone translation, its amino tail undergoes various modifications, such as methylation, acetylation, phosphorylation, ubiquitination, malonylation, propionylation, butyrylation, crotonylation, and lactylation, which together constitute the "histone code." The relationship between their combination and biological function can be used as an important epigenetic marker. Methylation and demethylation of the same histone residue, acetylation and deacetylation, phosphorylation and dephosphorylation, and even methylation and acetylation between different histone residues cooperate or antagonize with each other, forming a complex network. Histone-modifying enzymes, which cause numerous histone codes, have become a hot topic in the research on cancer therapeutic targets. Therefore, a thorough understanding of the role of histone post-translational modifications (PTMs) in cell life activities is very important for preventing and treating human diseases. In this review, several most thoroughly studied and newly discovered histone PTMs are introduced. Furthermore, we focus on the histone-modifying enzymes with carcinogenic potential, their abnormal modification sites in various tumors, and multiple essential molecular regulation mechanism. Finally, we summarize the missing areas of the current research and point out the direction of future research. We hope to provide a comprehensive understanding and promote further research in this field.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jiajun Wu
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Haiwei Guo
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Weiping Yao
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Shuang Li
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentJinzhou Medical UniversityJinzhouLiaoningChina
| | - Yanwei Lu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Yongshi Jia
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiaodong Liang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jianming Tang
- Department of Radiation OncologyThe First Hospital of Lanzhou UniversityLanzhou UniversityLanzhouGansuChina
| | - Haibo Zhang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| |
Collapse
|
2
|
Zhao J, Yang S, Xu Y, Qin S, Bie F, Chen L, Zhou F, Xie J, Liu X, Shu B, Qi S. Mechanical pressure-induced dedifferentiation of myofibroblasts inhibits scarring via SMYD3/ITGBL1 signaling. Dev Cell 2023:S1534-5807(23)00190-9. [PMID: 37192621 DOI: 10.1016/j.devcel.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/21/2022] [Accepted: 04/24/2023] [Indexed: 05/18/2023]
Abstract
Pressure therapy (PT) is an effective intervention for reducing scarring, but its underlying mechanism remains largely unclear. Here, we demonstrate that human scar-derived myofibroblasts dedifferentiate into normal fibroblasts in response to PT, and we identify how SMYD3/ITGBL1 contributes to the nuclear relay of mechanical signals. In clinical specimens, reductions in SMYD3 and ITGBL1 expression levels are strongly associated with the anti-scarring effects of PT. The integrin β1/ILK pathway is inhibited in scar-derived myofibroblasts upon PT, leading to decreased TCF-4 and subsequently to reductions in SMYD3 expression, which reduces the levels of H3K4 trimethylation (H3K4me3) and further suppresses ITGBL1 expression, resulting the dedifferentiation of myofibroblasts into fibroblasts. In animal models, blocking SMYD3 expression results in reductions of scarring, mimicking the positive effects of PT. Our results show that SMYD3 and ITGBL1 act as sensors and mediators of mechanical pressure to inhibit the progression of fibrogenesis and provide therapeutic targets for fibrotic diseases.
Collapse
Affiliation(s)
- Jingling Zhao
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Shuai Yang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Yingbin Xu
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Shitian Qin
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Fan Bie
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Lei Chen
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Fei Zhou
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Julin Xie
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xusheng Liu
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Bin Shu
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| | - Shaohai Qi
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
3
|
Zhang Y, Zhang Q, Zhang Y, Han J. The Role of Histone Modification in DNA Replication-Coupled Nucleosome Assembly and Cancer. Int J Mol Sci 2023; 24:ijms24054939. [PMID: 36902370 PMCID: PMC10003558 DOI: 10.3390/ijms24054939] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 03/08/2023] Open
Abstract
Histone modification regulates replication-coupled nucleosome assembly, DNA damage repair, and gene transcription. Changes or mutations in factors involved in nucleosome assembly are closely related to the development and pathogenesis of cancer and other human diseases and are essential for maintaining genomic stability and epigenetic information transmission. In this review, we discuss the role of different types of histone posttranslational modifications in DNA replication-coupled nucleosome assembly and disease. In recent years, histone modification has been found to affect the deposition of newly synthesized histones and the repair of DNA damage, further affecting the assembly process of DNA replication-coupled nucleosomes. We summarize the role of histone modification in the nucleosome assembly process. At the same time, we review the mechanism of histone modification in cancer development and briefly describe the application of histone modification small molecule inhibitors in cancer therapy.
Collapse
|
4
|
Histone Modifications Represent a Key Epigenetic Feature of Epithelial-to-Mesenchyme Transition in Pancreatic Cancer. Int J Mol Sci 2023; 24:ijms24054820. [PMID: 36902253 PMCID: PMC10003015 DOI: 10.3390/ijms24054820] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Pancreatic cancer is one of the most lethal malignant diseases due to its high invasiveness, early metastatic properties, rapid disease progression, and typically late diagnosis. Notably, the capacity for pancreatic cancer cells to undergo epithelial-mesenchymal transition (EMT) is key to their tumorigenic and metastatic potential, and is a feature that can explain the therapeutic resistance of such cancers to treatment. Epigenetic modifications are a central molecular feature of EMT, for which histone modifications are most prevalent. The modification of histones is a dynamic process typically carried out by pairs of reverse catalytic enzymes, and the functions of these enzymes are increasingly relevant to our improved understanding of cancer. In this review, we discuss the mechanisms through which histone-modifying enzymes regulate EMT in pancreatic cancer.
Collapse
|
5
|
Razmi M, Yazdanpanah A, Etemad-Moghadam S, Alaeddini M, Angelini S, Eini L. Clinical prognostic value of the SMYD2/3 as new epigenetic biomarkers in solid cancer patients: a systematic review and meta-analysis. Expert Rev Mol Diagn 2022; 22:1-15. [PMID: 36346387 DOI: 10.1080/14737159.2022.2144235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND SET and MYND domain-containing protein (SMYD) family with methyltransferase activity is involved in cancer progression. This novel meta-analysis aimed to evaluate the association of SMYD family with the clinical and survival outcomes in solid cancer patients. METHODS We systematically searched Embase, PubMed, Scopus and Web of Science to select relevant articles. Hazard ratios (HRs), odds ratios (ORs), and 95% confidence intervals were extracted. Heterogeneity was evaluated by chi-square-based Q and I2 tests, while publication bias by funnel plots and Egger's test. RESULTS Thirty-two articles (4,826 patients) met inclusion criteria. SMYD2/3 overexpression was statistically associated with poor overall survival (HR = 1.794, P < 0.001), disease/relapse/progression-free survival (HR = 2.114, P < 0.001), disease/cancer-specific survival (HR = 3.220, P = 0.003), larger tumor size (OR = 1.963, P < 0.001), advanced TNM stage (OR = 2.066, P < 0.001), lymph node metastasis (OR = 2.054, P < 0.001), and distant metastasis (OR = 1.978, P = 0.004). Subgroup analysis showed more significant association between SMYD2 overexpression and reduced survival outcomes than that in SMYD3. Conversely, the relationship between SMYD3 and various clinicopathologic factors was stronger compared to SMYD2. CONCLUSION Enhanced SMYD2/3 expression may be an unfavorable clinical prognostic factor in different solid cancer types.
Collapse
Affiliation(s)
- Mahdieh Razmi
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ayna Yazdanpanah
- Department of Tissue Engineering and Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahroo Etemad-Moghadam
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Alaeddini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology (Fabit), University of Bologna, Bologna, Italy
| | - Leila Eini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Division of Histology, Department of Basic Science, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Jiang Z, Zhang W, Sha G, Wang D, Tang D. Galectins Are Central Mediators of Immune Escape in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14225475. [PMID: 36428567 PMCID: PMC9688059 DOI: 10.3390/cancers14225475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and is highly immune tolerant. Although there is immune cell infiltration in PDAC tissues, most of the immune cells do not function properly and, therefore, the prognosis of PDAC is very poor. Galectins are carbohydrate-binding proteins that are intimately involved in the proliferation and metastasis of tumor cells and, in particular, play a crucial role in the immune evasion of tumor cells. Galectins induce abnormal functions and reduce numbers of tumor-associated macrophages (TAM), natural killer cells (NK), T cells and B cells. It further promotes fibrosis of tissues surrounding PDAC, enhances local cellular metabolism, and ultimately constructs tumor immune privileged areas to induce immune evasion behavior of tumor cells. Here, we summarize the respective mechanisms of action played by different Galectins in the process of immune escape from PDAC, focusing on the mechanism of action of Galectin-1. Galectins cause imbalance between tumor immunity and anti-tumor immunity by coordinating the function and number of immune cells, which leads to the development and progression of PDAC.
Collapse
Affiliation(s)
- Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Gengyu Sha
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Daorong Wang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225000, China
| | - Dong Tang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225000, China
- Correspondence: ; Tel.: +86-18952783556
| |
Collapse
|
7
|
SMYD3 regulates the abnormal proliferation of non-small-cell lung cancer cells via the H3K4me3/ANO1 axis. J Biosci 2022. [DOI: 10.1007/s12038-022-00299-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Santonja Á, Moya-García AA, Ribelles N, Jiménez-Rodríguez B, Pajares B, Fernández-De Sousa CE, Pérez-Ruiz E, Del Monte-Millán M, Ruiz-Borrego M, de la Haba J, Sánchez-Rovira P, Romero A, González-Neira A, Lluch A, Alba E. Role of germline variants in the metastasis of breast carcinomas. Oncotarget 2022; 13:843-862. [PMID: 35782051 PMCID: PMC9245581 DOI: 10.18632/oncotarget.28250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Most cancer-related deaths in breast cancer patients are associated with metastasis, a multistep, intricate process that requires the cooperation of tumour cells, tumour microenvironment and metastasis target tissues. It is accepted that metastasis does not depend on the tumour characteristics but the host’s genetic makeup. However, there has been limited success in determining the germline genetic variants that influence metastasis development, mainly because of the limitations of traditional genome-wide association studies to detect the relevant genetic polymorphisms underlying complex phenotypes. In this work, we leveraged the extreme discordant phenotypes approach and the epistasis networks to analyse the genotypes of 97 breast cancer patients. We found that the host’s genetic makeup facilitates metastases by the dysregulation of gene expression that can promote the dispersion of metastatic seeds and help establish the metastatic niche—providing a congenial soil for the metastatic seeds.
Collapse
Affiliation(s)
- Ángela Santonja
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Spain.,Laboratorio de Biología Molecular del Cáncer, Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain.,These authors contributed equally to this work
| | - Aurelio A Moya-García
- Laboratorio de Biología Molecular del Cáncer, Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain.,Departmento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain.,These authors contributed equally to this work
| | - Nuria Ribelles
- Unidad de Gestión Clínica Intercentro de Oncología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain
| | - Begoña Jiménez-Rodríguez
- Unidad de Gestión Clínica Intercentro de Oncología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Málaga, Spain
| | - Bella Pajares
- Unidad de Gestión Clínica Intercentro de Oncología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Málaga, Spain
| | - Cristina E Fernández-De Sousa
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Spain.,Laboratorio de Biología Molecular del Cáncer, Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain
| | | | - María Del Monte-Millán
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
| | | | - Juan de la Haba
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain.,Biomedical Research Institute, Complejo Hospitalario Reina Sofía, Córdoba, Spain
| | | | - Atocha Romero
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Anna González-Neira
- Human Genotyping-CEGEN Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Lluch
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain.,Department of Oncology and Hematology, Hospital Clínico Universitario, Valencia, Spain.,INCLIVA Biomedical Research Institute, Universidad de Valencia, Valencia, Spain
| | - Emilio Alba
- Laboratorio de Biología Molecular del Cáncer, Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain.,Unidad de Gestión Clínica Intercentro de Oncología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain
| |
Collapse
|
9
|
Wang X, Liu D, Yang J. Clinicopathological and Prognostic Significance of SMYD3 in Human Cancers: A Systematic Review and Meta-analysis. Genet Test Mol Biomarkers 2022; 26:331-339. [PMID: 35763383 DOI: 10.1089/gtmb.2021.0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Dysregulation of the SET and MYND domain-containing protein 3 (SMYD3) has been found in multiple cancers. This meta-analysis aimed to elucidate the association between SMYD3 expression and clinical outcomes in cancer. Methods: A systematic search of Web of Science, Embase, PubMed, Cochrane Library, and CNKI was conducted. The relationship between SMYD3 expression and cancer patients' overall survival (OS) was evaluated using pooled hazard ratios (HRs) and their corresponding confidence intervals (95% CIs). The association between SMYD3 expression and clinicopathological features was assessed using odds ratios (ORs) with 95% CIs, including tumor size, lymph node metastasis (LNM), distance metastasis, and TNM stage. Results: In total, 715 cancer patients with hepatocellular carcinoma, nonsmall cell lung carcinoma, esophageal squamous cell carcinoma, glioma, colorectal cancer, and/or bladder cancer from seven studies were included in our meta-analysis. SMYD3 overexpression was significantly associated with poor OS (HR = 1.81, 95% CI: 1.38-2.37, p < 0.01) with no heterogeneity (I2 = 0.0%, p = 0.929) in various cancers. Subgroup analysis showed that the prognostic value of SMYD3 across multiple tumors was constant as the tumor type, sample size, and methods of data extraction changed. Increased SMYD3 expression was positively associated with LNM (OR = 1.88, 95% CI = 1.33-2.66, p < 0.001), tumor size (OR = 1.68, 95% CI: 1.09-2.60, p = 0.019), and advanced TNM stage (OR = 1.84, 95% CI: 1.25-2.69, p = 0.002). Conclusions: Upregulation of SMYD3 was significantly associated with poor prognosis in various cancers, suggesting that SMYD3 may be a useful prognostic biomarker.
Collapse
Affiliation(s)
- Xuan Wang
- The Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Oncology, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, China
| | - Debao Liu
- Department of Oncology, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, China
| | - Jing Yang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
10
|
Fasano C, Lepore Signorile M, De Marco K, Forte G, Sanese P, Grossi V, Simone C. Identifying novel SMYD3 interactors on the trail of cancer hallmarks. Comput Struct Biotechnol J 2022; 20:1860-1875. [PMID: 35495117 PMCID: PMC9039736 DOI: 10.1016/j.csbj.2022.03.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/30/2022] Open
Abstract
SMYD3 overexpression in several human cancers highlights its crucial role in carcinogenesis. Nonetheless, SMYD3 specific activity in cancer development and progression is currently under debate. Taking advantage of a library of rare tripeptides, which we first tested for their in vitro binding affinity to SMYD3 and then used as in silico probes, we recently identified BRCA2, ATM, and CHK2 as direct SMYD3 interactors. To gain insight into novel SMYD3 cancer-related roles, here we performed a comprehensive in silico analysis to cluster all potential SMYD3-interacting proteins identified by screening the human proteome for the previously tested tripeptides, based on their involvement in cancer hallmarks. Remarkably, we identified mTOR, BLM, MET, AMPK, and p130 as new SMYD3 interactors implicated in cancer processes. Further studies are needed to characterize the functional mechanisms underlying these interactions. Still, these findings could be useful to devise novel therapeutic strategies based on the combined inhibition of SMYD3 and its newly identified molecular partners. Of note, our in silico methodology may be useful to search for unidentified interactors of other proteins of interest.
Collapse
Affiliation(s)
- Candida Fasano
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
- Corresponding authors at: Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy (C.Fasano, C. Simone).
| | - Martina Lepore Signorile
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Katia De Marco
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Giovanna Forte
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Paola Sanese
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Valentina Grossi
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Cristiano Simone
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari, Italy
- Corresponding authors at: Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy (C.Fasano, C. Simone).
| |
Collapse
|
11
|
Zhao Y, Yang M, Wang S, Abbas SJ, Zhang J, Li Y, Shao R, Liu Y. An Overview of Epigenetic Methylation in Pancreatic Cancer Progression. Front Oncol 2022; 12:854773. [PMID: 35296007 PMCID: PMC8918690 DOI: 10.3389/fonc.2022.854773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past decades, the aberrant epigenetic modification, apart from genetic alteration, has emerged as dispensable events mediating the transformation of pancreatic cancer (PC). However, the understanding of molecular mechanisms of methylation modifications, the most abundant epigenetic modifications, remains superficial. In this review, we focused on the mechanistic insights of DNA, histone, and RNA methylation that regulate the progression of PC. The methylation regulators including writer, eraser and reader participate in the modification of gene expression associated with cell proliferation, invasion and apoptosis. Some of recent clinical trials on methylation drug targeting were also discussed. Understanding the novel regulatory mechanisms in the methylation modification may offer alternative opportunities to improve therapeutic efficacy to fight against this dismal disease.
Collapse
Affiliation(s)
- Yuhao Zhao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Mao Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Shijia Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Sk Jahir Abbas
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
| | - Junzhe Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yongsheng Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Rong Shao
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yingbin Liu, ; Rong Shao,
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- *Correspondence: Yingbin Liu, ; Rong Shao,
| |
Collapse
|
12
|
Long K, Zeng Q, Dong W. The clinical significance of microRNA-409 in pancreatic carcinoma and associated tumor cellular functions. Bioengineered 2021; 12:4633-4642. [PMID: 34338153 PMCID: PMC8806886 DOI: 10.1080/21655979.2021.1956404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023] Open
Abstract
In recent years, the increasing incidence of pancreatic carcinoma (PC) patients has become one of the hot issues in the world. microRNAs (miRNAs) can act as oncogenes or tumor suppressor genes and have unpredictable effects on tumors, thus affecting the prognosis and survival of cancer patients. In this paper, we mainly studied the role of microRNA (miR)-409 in PC. The expression levels of miR-409 were analyzed by qRT-PCR. Kaplan-Meier curve and Cox regression were used to analyze the relationship between miR-409 and patient prognosis. The effects of miR-409 on the abilities of proliferation, migration and invasion were detected by CCK-8 and Transwell. The expression levels of miR-409 were down-regulated in PC, compared with normal controls. The prognosis of patients with low miR-409 expression is significantly poor in comparison with those with high expression. The down-regulation of miR-409 was conducive to the proliferation, migration and invasion of PC cells. miR-409 is a tumor suppressor of PC, the clinical significance of miR-409 in pancreatic cancer and related tumor cell function was clarified.
Collapse
Affiliation(s)
- Kui Long
- Department of Three Wards of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qingbin Zeng
- Department of Three Wards of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wenzhi Dong
- Department of Three Wards of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
13
|
Rueda-Robles A, Audano M, Álvarez-Mercado AI, Rubio-Tomás T. Functions of SMYD proteins in biological processes: What do we know? An updated review. Arch Biochem Biophys 2021; 712:109040. [PMID: 34555372 DOI: 10.1016/j.abb.2021.109040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Epigenetic modifiers, such as methyltransferases, play crucial roles in the regulation of many biological processes, including development, cancer and multiple physiopathological conditions. SUMMARY The Su(Var)3-9, Enhancer-of-zeste and Trithorax (SET) and Myeloid, Nervy, and DEAF-1 (MYND) domain-containing (SMYD) protein family consists of five members in humans and mice (i.e. SMYD1, SMYD2, SMYD3, SMYD4 and SMYD5), which are known or predicted to have methyltransferase activity on histone and non-histone substrates. The abundance of information concerning SMYD2 and SMYD3 is of note, whereas the other members of the SMYD family have not been so thoroughly studied CONCLUSION: Here we review the literature regarding SMYD proteins published in the last five years, including basic molecular biology mechanistic studies using in vitro systems and animal models, as well as human studies with a more translational or clinical approach.
Collapse
Affiliation(s)
- Ascensión Rueda-Robles
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016, Armilla, Granada, Spain
| | - Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milan, Italy
| | - Ana I Álvarez-Mercado
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016, Armilla, Granada, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, 18014, Spain.
| | - Teresa Rubio-Tomás
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain; School of Medicine, University of Crete, 70013, Herakleion, Crete, Greece.
| |
Collapse
|
14
|
Liu XY, Guo CH, Xi ZY, Xu XQ, Zhao QY, Li LS, Wang Y. Histone methylation in pancreatic cancer and its clinical implications. World J Gastroenterol 2021; 27:6004-6024. [PMID: 34629816 PMCID: PMC8476335 DOI: 10.3748/wjg.v27.i36.6004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive human cancer. Appropriate methods for the diagnosis and treatment of PC have not been found at the genetic level, thus making epigenetics a promising research path in studies of PC. Histone methylation is one of the most complicated types of epigenetic modifications and has proved crucial in the development of PC. Histone methylation is a reversible process regulated by readers, writers, and erasers. Some writers and erasers can be recognized as potential biomarkers and candidate therapeutic targets in PC because of their unusual expression in PC cells compared with normal pancreatic cells. Based on the impact that writers have on the development of PC, some inhibitors of writers have been developed. However, few inhibitors of erasers have been developed and put to clinical use. Meanwhile, there is not enough research on the reader domains. Therefore, the study of erasers and readers is still a promising area. This review focuses on the regulatory mechanism of histone methylation, and the diagnosis and chemotherapy of PC based on it. The future of epigenetic modification in PC research is also discussed.
Collapse
Affiliation(s)
- Xing-Yu Liu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Chuan-Hao Guo
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Zhi-Yuan Xi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Xin-Qi Xu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Qing-Yang Zhao
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Sha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Ying Wang
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
15
|
Playing on the Dark Side: SMYD3 Acts as a Cancer Genome Keeper in Gastrointestinal Malignancies. Cancers (Basel) 2021; 13:cancers13174427. [PMID: 34503239 PMCID: PMC8430692 DOI: 10.3390/cancers13174427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/17/2023] Open
Abstract
Simple Summary The activity of SMYD3 in promoting carcinogenesis is currently under debate. Growing evidence seems to confirm that SMYD3 overexpression correlates with poor prognosis, cancer growth and invasion, especially in gastrointestinal tumors. In this review, we dissect the emerging role played by SMYD3 in the regulation of cell cycle and DNA damage response by promoting homologous recombination (HR) repair and hence cancer cell genomic stability. Considering the crucial role of PARP1 in other DNA repair mechanisms, we also discuss a recently evaluated synthetic lethality approach based on the combined use of SMYD3 and PARP inhibitors. Interestingly, a significant proportion of HR-proficient gastrointestinal tumors expressing high levels of SMYD3 from the PanCanAtlas dataset seem to be eligible for this innovative strategy. This promising approach could be taken advantage of for therapeutic applications of SMYD3 inhibitors in cancer treatment. Abstract The SMYD3 methyltransferase has been found overexpressed in several types of cancers of the gastrointestinal (GI) tract. While high levels of SMYD3 have been positively correlated with cancer progression in cellular and advanced mice models, suggesting it as a potential risk and prognosis factor, its activity seems dispensable for autonomous in vitro cancer cell proliferation. Here, we present an in-depth analysis of SMYD3 functional role in the regulation of GI cancer progression. We first describe the oncogenic activity of SMYD3 as a transcriptional activator of genes involved in tumorigenesis, cancer development and transformation and as a co-regulator of key cancer-related pathways. Then, we dissect its role in orchestrating cell cycle regulation and DNA damage response (DDR) to genotoxic stress by promoting homologous recombination (HR) repair, thereby sustaining cancer cell genomic stability and tumor progression. Based on this evidence and on the involvement of PARP1 in other DDR mechanisms, we also outline a synthetic lethality approach consisting of the combined use of SMYD3 and PARP inhibitors, which recently showed promising therapeutic potential in HR-proficient GI tumors expressing high levels of SMYD3. Overall, these findings identify SMYD3 as a promising target for drug discovery.
Collapse
|
16
|
Wang Y, Wang S, Che Y, Chen D, Liu Y, Shi Y. Exploring new targets for the treatment of hepatitis-B virus and hepatitis-B virus-associated hepatocellular carcinoma: A new perspective in bioinformatics. Medicine (Baltimore) 2021; 100:e26917. [PMID: 34414947 PMCID: PMC8376394 DOI: 10.1097/md.0000000000026917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/24/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Hepatitis B Virus (HBV) infection is a global public health problem. After infection, patients experience a natural course from chronic hepatitis to cirrhosis and even Hepatitis B associated Hepatocellular Carcinoma (HBV-HCC). With the multi-omics research, many differentially expressed genes from chronic hepatitis to HCC stages have been discovered. All these provide important clues for new biomarkers and therapeutic targets. The purpose of this study is to explore the differential gene expression of HBV and HBV-related liver cancer, and analyze their enrichments and significance of related pathways. METHODS In this study, we downloaded four microarray datasets GSE121248, GSE67764, GSE55092, GSE55092 and GSE83148 from the Gene Expression Omnibus (GEO) database. Using these four datasets, patients with chronic hepatitis B (CHB) differentially expressed genes (CHB DEGs) and patients with HBV-related HCC differentially expressed genes (HBV-HCC DEGs) were identified. Then Protein-protein Interaction (PPI) network analysis, Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to excavate the functional interaction of these two groups of DEGs and the common DEGs. Finally, the Kaplan website was used to analyze the role of these genes in HCC prognostic. RESULTS A total of 241 CHB DEGs, 276 HBV-HCC DEGs, and 4 common DEGs (cytochrome P450 family 26 subfamily A member 1 (CYP26A1), family with sequence similarity 110 member C(FAM110C), SET and MYND domain containing 3(SMYD3) and zymogen granule protein 16(ZG16)) were identified. CYP26A1, FAM110C, SMYD3 and ZG16 exist in 4 models and interact with 33 genes in the PPI network of CHB and HBV-HCC DEGs,. GO function analysis showed that: CYP26A1, FAM110C, SMYD3, ZG16, and the 33 genes in their models mainly affect the regulation of synaptic vesicle transport, tangential migration from the subventricular zone to the olfactory bulb, cellular response to manganese ion, protein localization to mitochondrion, cellular response to dopamine, negative regulation of neuron death in the biological process of CHB. In the biological process of HBV-HCC, they mainly affect tryptophan catabolic process, ethanol oxidation, drug metabolic process, tryptophan catabolic process to kynurenine, xenobiotic metabolic process, retinoic acid metabolic process, steroid metabolic process, retinoid metabolic process, steroid catabolic process, retinal metabolic process, and rogen metabolic process. The analysis of the 4 common DEGs related to the prognosis of liver cancer showed that: CYP26A1, FAM110C, SMYD3 and ZG16 are closely related to the development of liver cancer and patient survival. Besides, further investigation of the research status of the four genes showed that CYP26A1 and SMYD3 could also affect HBV replication and the prognosis of liver cancer. CONCLUSION CYP26A1, FAM110C, SMYD3 and ZG16 are unique genes to differentiate HBV infection and HBV-related HCC, and expected to be novel targets for HBV-related HCC occurrence and prognostic judgement.
Collapse
|
17
|
Lv HW, Xing WQ, Ba YF, Li HM, Wang HR, Li Y. SMYD3 confers cisplatin chemoresistance of NSCLC cells in an ANKHD1-dependent manner. Transl Oncol 2021; 14:101075. [PMID: 33773404 PMCID: PMC8027902 DOI: 10.1016/j.tranon.2021.101075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Up-regulated SMYD3 correlates with worse prognosis and controls DDP resistance of NSCLC. ANKHD1 interacts with and is essential for SMYD3-induced DDP resistance. CDK2 is identified to be a downstream effector of SMYD3-ANKHD1 in NSCLC. SMYD3-ANKHD1 critically regulates the growth DDP-resistant NSCLC cells in vivo.
Background Cisplatin (DDP) remains the backbone of chemotherapy for non-small cell lung cancer (NSCLC), yet its clinical efficacy is limited by DDP resistance. We aim to investigate the role of the SET and MYND domain-containing protein 3 (SMYD3) in DDP resistance of NSCLC. Methods Expression pattern of SMYD3 was determined in NSCLC tissues using qRT-PCR, which also validated its correlation with NSCLC clinicopathological stages. Impacts of SMYD3 on DDP resistance were evaluated by knocking down SMYD3 in DDP-resistant cells and overexpressing it in DDP-sensitive cells, and assessed for several phenotypes: IC50 by MTT, long-term proliferation by colony formation, apoptosis and cell-cycle distribution by flow cytometry. The interaction between Ankyrin Repeat and KH Domain Containing 1 (ANKHD1) and SMYD3 was examined by co-immunoprecipitation and immunofluorescence. The transcriptional regulation of SMYD3 on cyclin-dependent kinase 2 (CDK2) promoter regions was confirmed using chromatin-immunoprecipitation. The in vivo experiments using DDP-resistant cells with altered SMYD3 and ANKHD1 expression were further performed to verify the SMYD3/ANKHD1 axis. Results Highly expressed SMYD3 was observed in NSCLC tissues or cells, acted as a sensitive indicator for NSCLC, correlated with higher TNM stages or resistant to DDP treatment, and shorter overall survival. The promotion of SMYD3 on DDP resistance requires co-regulator, ANKHD1. CDK2 was identified as a downstream effector. In vivo, SMYD3 knockdown inhibited the growth of DDP-resistant NSCLC cells, which was abolished by ANKHD1 overexpression. Conclusions SMYD3 confers NSCLC cells chemoresistance to DDP in an ANKHD1-dependent manner, providing novel therapeutic targets to overcome DDP resistance in NSCLC .
Collapse
Affiliation(s)
- Hong-Wei Lv
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, People's Republic of China
| | - Wen-Qun Xing
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, People's Republic of China
| | - Yu-Feng Ba
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, People's Republic of China
| | - Hao-Miao Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, People's Republic of China
| | - Hao-Ran Wang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, People's Republic of China
| | - Yin Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan Province, People's Republic of China; Department of Thoracic Surgery, The Cancer Hospital Chinese Academy of Medical Science, Beijing 100021, People's Republic of China.
| |
Collapse
|
18
|
Bernard BJ, Nigam N, Burkitt K, Saloura V. SMYD3: a regulator of epigenetic and signaling pathways in cancer. Clin Epigenetics 2021; 13:45. [PMID: 33637115 PMCID: PMC7912509 DOI: 10.1186/s13148-021-01021-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Chromatin modifiers and their implications in oncogenesis have been an exciting area of cancer research. These are enzymes that modify chromatin via post-translational modifications such as methylation, acetylation, sumoylation, phosphorylation, in addition to others. Depending on the modification, chromatin modifiers can either promote or repress transcription. SET and MYN-domain containing 3 (SMYD3) is a chromatin modifier that has been implicated in the development and progression of various cancer types. It was first reported to tri-methylate Histone 3 Lysine 4 (H3K4), a methylation mark known to promote transcription. However, since this discovery, other histone (H4K5 and H4K20, for example) and non-histone (VEGFR, HER2, MAP3K2, ER, and others) substrates of SMYD3 have been described, primarily in the context of cancer. This review aims to provide a background on basic characteristics of SMYD3, such as its protein structure and tissue expression profiles, discuss reported histone and non-histone substrates of SMYD3, and underscore prognostic and functional implications of SMYD3 in cancer. Finally, we briefly discuss ongoing efforts to develop inhibitors of SMYD3 for future therapeutic use. It is our hope that this review will help synthesize existing research on SMYD3 in an effort to propel future discovery.
Collapse
Affiliation(s)
- Benjamin J Bernard
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Bethesda, MD, 20852, USA
| | - Nupur Nigam
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Bethesda, MD, 20852, USA
| | | | - Vassiliki Saloura
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Bethesda, MD, 20852, USA.
| |
Collapse
|
19
|
Sanese P, Fasano C, Buscemi G, Bottino C, Corbetta S, Fabini E, Silvestri V, Valentini V, Disciglio V, Forte G, Lepore Signorile M, De Marco K, Bertora S, Grossi V, Guven U, Porta N, Di Maio V, Manoni E, Giannelli G, Bartolini M, Del Rio A, Caretti G, Ottini L, Simone C. Targeting SMYD3 to Sensitize Homologous Recombination-Proficient Tumors to PARP-Mediated Synthetic Lethality. iScience 2020; 23:101604. [PMID: 33205017 PMCID: PMC7648160 DOI: 10.1016/j.isci.2020.101604] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/07/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
SMYD3 is frequently overexpressed in a wide variety of cancers. Indeed, its inactivation reduces tumor growth in preclinical in vivo animal models. However, extensive characterization in vitro failed to clarify SMYD3 function in cancer cells, although confirming its importance in carcinogenesis. Taking advantage of a SMYD3 mutant variant identified in a high-risk breast cancer family, here we show that SMYD3 phosphorylation by ATM enables the formation of a multiprotein complex including ATM, SMYD3, CHK2, and BRCA2, which is required for the final loading of RAD51 at DNA double-strand break sites and completion of homologous recombination (HR). Remarkably, SMYD3 pharmacological inhibition sensitizes HR-proficient cancer cells to PARP inhibitors, thereby extending the potential of the synthetic lethality approach in human tumors. SMYD3 phosphorylation by ATM favors the formation of HR complexes during DSB response SMYD3 mediates DSB repair by promoting RAD51 recruitment at DNA damage sites SMYD3 inhibition triggers a compensatory PARP-dependent DNA damage response Co-targeting SMYD3/PARP leads to synthetic lethality in HR-proficient cancer cells
Collapse
Affiliation(s)
- Paola Sanese
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Giacomo Buscemi
- Institute of Molecular Genetics, IGM "Luigi Luca Cavalli-Sforza", National Research Council (CNR), Pavia 27100, Italy
| | - Cinzia Bottino
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Silvia Corbetta
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Edoardo Fabini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40126, Italy.,BioChemoInformatics Unit, Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Bologna 40129, Italy
| | - Valentina Silvestri
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma 00185, Italy
| | - Virginia Valentini
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma 00185, Italy
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Stefania Bertora
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Ummu Guven
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Natale Porta
- Department of Medical-Surgical Sciences and Biotechnology, Polo Pontino University of Roma "La Sapienza", Latina 04100, Italy
| | - Valeria Di Maio
- Department of Medical-Surgical Sciences and Biotechnology, Polo Pontino University of Roma "La Sapienza", Latina 04100, Italy
| | - Elisabetta Manoni
- BioChemoInformatics Unit, Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Bologna 40129, Italy
| | - Gianluigi Giannelli
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - Alberto Del Rio
- BioChemoInformatics Unit, Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Bologna 40129, Italy.,Innovamol Consulting Srl, Modena 41123, Italy
| | | | - Laura Ottini
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma 00185, Italy
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy.,Department of Biomedical Sciences and Human Oncology (DIMO), Medical Genetics; University of Bari Aldo Moro, Bari 70124, Italy
| |
Collapse
|
20
|
Yue FR, Wei ZB, Yan RZ, Guo QH, Liu B, Zhang JH, Li Z. SMYD3 promotes colon adenocarcinoma (COAD) progression by mediating cell proliferation and apoptosis. Exp Ther Med 2020; 20:11. [PMID: 32934676 PMCID: PMC7472017 DOI: 10.3892/etm.2020.9139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Colon adenocarcinoma (COAD) is a type of common malignant tumor originating in the digestive tract. Recently, targeted therapy has had significant effects on the treatment of COAD. However, more effective molecular targets need to be developed. SET and MYND domain-containing protein 3 (SMYD3) is a type of methyltransferase which methylates histone and non-histone proteins. The effects of SMYD3 on cancer progression and metastasis have been widely revealed. However, its possible role in COAD remains unclear. The current study demonstrated that SMYD3 expression was upregulated in human COAD tissues via analyzing the The Cancer Genome Atlas (TCGA) database and the immunohistochemical assays. Furthermore, the expression of SMYD3 was correlated with prognosis and tumor stage (P=0.038) in patients with COAD. Colony formation, MTT, FCM assays and animal assays indicated SMYD3 affected the proliferation, apoptosis and the cell cycle of COAD cells in vitro and promoted tumor growth in mice in vivo. In summary, the results demonstrated the effects of SMYD3 on COAD progression and we hypothesized that SMYD3 is a novel molecular target for COAD treatment.
Collapse
Affiliation(s)
- Fu-Ren Yue
- Department of Clinical Laboratory, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Zhi-Bin Wei
- Department of Clinical Laboratory, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Rui-Zhen Yan
- Department of Clinical Laboratory, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Qiu-Hong Guo
- Department of Clinical Laboratory, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Bing Liu
- Department of Clinical Laboratory, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Jing-Hui Zhang
- Department of Clinical Laboratory, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Zheng Li
- Department of Clinical Laboratory, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| |
Collapse
|
21
|
Chandra P, Dixit R, Pratap A, Mishra S, Mishra R, Shukla VK. Analysis of SET and MYND Domain-Containing Protein 3 (SMYD3) Expression in Gallbladder Cancer: a Pilot Study. Indian J Surg Oncol 2020; 12:111-117. [PMID: 33994736 DOI: 10.1007/s13193-020-01168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/07/2020] [Indexed: 11/29/2022] Open
Abstract
The Suvar, Enhancer of zeste, and Trithorax (SET) and myeloid-Nervy-DEAF-1 (MYND) domain-containing protein 3 (SMYD3) is a histone lysine methyltransferase and has been recently unveiled to play significant roles in the progression of human cancer via regulating various key cancer-associated genes and pathways. The role of SMYD3 in gallbladder cancer (GBC) still needs to be studied. In the present study, we examined the SMYD3 gene expression at mRNA and protein level to look its impact on risk for developing gallbladder carcinogenesis. SMYD3 expression was evaluated by immunohistochemistry and reverse transcriptase PCR (RT-PCR) from 30 cases each of GBC and cholelithiasis patients. The expression was compared with different clinicopathological parameters. The SMYD3 expression was found to be significantly upregulated in GBC than cholelithiasis group (p < 0.05). The SMYD3 with increased expression level was observed in 73.3% of the GBC cases (p < 0.05). Moreover, mRNA SMYD3 expression was observed in 73.3% of GBC and 10% of control (p < 0.05). Our results indicated that the overexpression of SMYD3 plays an important role in the GBC progression, and SMYD3 may represent useful biomarker for gallbladder cancer patients.
Collapse
Affiliation(s)
- Pushkar Chandra
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005 India
| | - Ruhi Dixit
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005 India
| | - Arvind Pratap
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005 India
| | - Suman Mishra
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rajnikant Mishra
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vijay Kumar Shukla
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005 India
| |
Collapse
|
22
|
Slapak EJ, Duitman J, Tekin C, Bijlsma MF, Spek CA. Matrix Metalloproteases in Pancreatic Ductal Adenocarcinoma: Key Drivers of Disease Progression? BIOLOGY 2020; 9:biology9040080. [PMID: 32325664 PMCID: PMC7235986 DOI: 10.3390/biology9040080] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer is a dismal disorder that is histologically characterized by a dense fibrotic stroma around the tumor cells. As the extracellular matrix comprises the bulk of the stroma, matrix degrading proteases may play an important role in pancreatic cancer. It has been suggested that matrix metalloproteases are key drivers of both tumor growth and metastasis during pancreatic cancer progression. Based upon this notion, changes in matrix metalloprotease expression levels are often considered surrogate markers for pancreatic cancer progression and/or treatment response. Indeed, reduced matrix metalloprotease levels upon treatment (either pharmacological or due to genetic ablation) are considered as proof of the anti-tumorigenic potential of the mediator under study. In the current review, we aim to establish whether matrix metalloproteases indeed drive pancreatic cancer progression and whether decreased matrix metalloprotease levels in experimental settings are therefore indicative of treatment response. After a systematic review of the studies focusing on matrix metalloproteases in pancreatic cancer, we conclude that the available literature is not as convincing as expected and that, although individual matrix metalloproteases may contribute to pancreatic cancer growth and metastasis, this does not support the generalized notion that matrix metalloproteases drive pancreatic ductal adenocarcinoma progression.
Collapse
Affiliation(s)
- Etienne J. Slapak
- Center of Experimental and Molecular Medicine, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (E.J.S.); (J.D.); (C.T.)
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - JanWillem Duitman
- Center of Experimental and Molecular Medicine, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (E.J.S.); (J.D.); (C.T.)
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
| | - Cansu Tekin
- Center of Experimental and Molecular Medicine, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (E.J.S.); (J.D.); (C.T.)
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - C. Arnold Spek
- Center of Experimental and Molecular Medicine, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (E.J.S.); (J.D.); (C.T.)
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
23
|
SMYD3: An Oncogenic Driver Targeting Epigenetic Regulation and Signaling Pathways. Cancers (Basel) 2020; 12:cancers12010142. [PMID: 31935919 PMCID: PMC7017119 DOI: 10.3390/cancers12010142] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/26/2019] [Accepted: 01/01/2020] [Indexed: 12/20/2022] Open
Abstract
SMYD3 is a member of the SMYD lysine methylase family and plays an important role in the methylation of various histone and non-histone targets. Aberrant SMYD3 expression contributes to carcinogenesis and SMYD3 upregulation was proposed as a prognostic marker in various solid cancers. Here we summarize SMYD3-mediated regulatory mechanisms, which are implicated in the pathophysiology of cancer, as drivers of distinct oncogenic pathways. We describe SMYD3-dependent mechanisms affecting cancer progression, highlighting SMYD3 interplay with proteins and RNAs involved in the regulation of cancer cell proliferation, migration and invasion. We also address the effectiveness and mechanisms of action for the currently available SMYD3 inhibitors. The findings analyzed herein demonstrate that a complex network of SMYD3-mediated cytoplasmic and nuclear interactions promote oncogenesis across different cancer types. These evidences depict SMYD3 as a modulator of the transcriptional response and of key signaling pathways, orchestrating multiple oncogenic inputs and ultimately, promoting transcriptional reprogramming and tumor transformation. Further insights into the oncogenic role of SMYD3 and its targeting of different synergistic oncogenic signals may be beneficial for effective cancer treatment.
Collapse
|