1
|
Zhang L, Wang Y, Gao J, Zhou X, Huang M, Wang X, He Z. Non‑coding RNA: A promising diagnostic biomarker and therapeutic target for esophageal squamous cell carcinoma (Review). Oncol Lett 2024; 27:255. [PMID: 38646493 PMCID: PMC11027111 DOI: 10.3892/ol.2024.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
Esophageal cancer (EC) is a common form of malignant tumor in the digestive system that is classified into two types: Esophageal squamous cell carcinomas (ESCC) and esophageal adenocarcinoma. ESCC is known for its early onset of symptoms, which can be difficult to identify, as well as its rapid progression and tendency to develop drug resistance to chemotherapy and radiotherapy. These factors contribute to the high incidence of disease and low cure rate. Therefore, a diagnostic biomarker and therapeutic target need to be identified for ESCC. Non-coding RNAs (ncRNAs) are a class of molecules that are transcribed from DNA but do not encode proteins. Initially, ncRNAs were considered to be non-functional segments generated during transcription. However, with advancements in high-throughput sequencing technologies in recent years, ncRNAs have been associated with poor prognosis, drug resistance and progression of ESCC. The present study provides a comprehensive overview of the biogenesis, characteristics and functions of ncRNAs, particularly focusing on microRNA, long ncRNAs and circular RNAs. Furthermore, the ncRNAs that could potentially be used as diagnostic biomarkers and therapeutic targets for ESCC are summarized to highlight their application value and prospects in ESCC.
Collapse
Affiliation(s)
- Longze Zhang
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yanyang Wang
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jianmei Gao
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xue Zhou
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Minglei Huang
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
2
|
Wei QY, Jin F, Wang ZY, Li BJ, Cao WB, Sun ZY, Mo SJ. MicroRNAs: A novel signature in the metastasis of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:1497-1523. [PMID: 38617454 PMCID: PMC11008420 DOI: 10.3748/wjg.v30.i11.1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant epithelial tumor, characterized by squamous cell differentiation, it is the sixth leading cause of cancer-related deaths globally. The increased mortality rate of ESCC patients is predominantly due to the advanced stage of the disease when discovered, coupled with higher risk of metastasis, which is an exceedingly malignant characteristic of cancer, frequently leading to a high mortality rate. Unfortunately, there is currently no specific and effective marker to predict and treat metastasis in ESCC. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, approximately 22 nucleotides in length. miRNAs are vital in modulating gene expression and serve pivotal regulatory roles in the occurrence, progression, and prognosis of cancer. Here, we have examined the literature to highlight the intimate correlations between miRNAs and ESCC metastasis, and show that ESCC metastasis is predominantly regulated or regulated by genetic and epigenetic factors. This review proposes a potential role for miRNAs as diagnostic and therapeutic biomarkers for metastasis in ESCC metastasis, with the ultimate aim of reducing the mortality rate among patients with ESCC.
Collapse
Affiliation(s)
- Qi-Ying Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Feng Jin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhong-Yu Wang
- Department of Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Bing-Jie Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Wen-Bo Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhi-Yan Sun
- Division of Special Service, Department of Basic Oncology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Sai-Jun Mo
- Department of Basic Science of Oncology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
3
|
Zhang M, Wang Z, Wu Y, Chen M, Li J, Liu G. Hypoxia-induced factor-1α promotes radioresistance of esophageal cancer cells by transcriptionally activating LINC01116 and suppressing miR-3612 under hypoxia. J Biochem Mol Toxicol 2024; 38:e23551. [PMID: 37983895 DOI: 10.1002/jbt.23551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/02/2023] [Accepted: 09/27/2023] [Indexed: 11/22/2023]
Abstract
Esophageal cancer (EC) is a challenging tumor to treat with radiotherapy, often exhibiting resistance to this treatment modality. To explore the factors influencing radioresistance, we focused on the role of hypoxia-induced factor-1α (HIF-1α), and its interaction with the long noncoding RNA long intergenic nonprotein coding RNA 1116 (LINC01116). We analyzed the LINC01116 expression in EC and EC cell lines/human normal esophageal epithelial cell line (Het-1A). LINC01116 was silenced/overexpressed in EC109/KYSE30 cells under hypoxia, followed by radioresistance assessment. We measured HIF-1α levels in hypoxic EC cells and further validated the binding of HIF-1α with LINC01116, analyzing their interaction in EC cells. We then performed experiments in EC109 cells by transfection them with sh-HIF-1α/oe-LINC01116 to verify the effects. Additonally, we analyzed the localization of LINC01116 and its binding with miR-3612, followed by a combined experiment performed to validate the results. Our findings indicated that LINC01116 was highly expressed in EC and further elevated in hypoxic EC cells. LINC01116 was expressed at a high level in EC, which was further elevated in EC cells under hypoxic conditions. Knockdown of LINC01116 triggered EC cell apoptosis, thus suppressing radioresistance. Further investigation revealed that HIF-1α transcriptionally activated LINC01116 expression under hypoxia, and silencing HIF-1α lowered EC cell radioresistance by downregulating LINC01116. Under hypoxic conditions, LINC01116 could function as a sponge for miR-3612 and inhibit its expression. This interaction between LINC01116 and miR-3612 played a crucial role in mediating radioresistance in EC cells. Briefly, under hypoxic conditions, HIF-1α facilitates radioresistance of EC cells by transcriptionally activating LINC01116 expression and downregulating miR-3612.
Collapse
Affiliation(s)
- Mengyan Zhang
- Oncology Department, Guangzhou No.1 People's Hospital, Guangzhou City, Guangdong Province, P.R. China
- Thoracic Radiotherapy Department, Fujian Medical University Cancer Hospital Fujian Cancer Hospital, Fuzhou City, Fujian Province, P.R. China
| | - Zhiping Wang
- College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou City, Fujian Province, P.R. China
| | - Yahua Wu
- Thoracic Radiotherapy Department, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, P.R. China
| | - Mingqiu Chen
- College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou City, Fujian Province, P.R. China
| | - Jiancheng Li
- College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou City, Fujian Province, P.R. China
| | - Guolong Liu
- Oncology Department, Guangzhou No.1 People's Hospital, Guangzhou City, Guangdong Province, P.R. China
| |
Collapse
|
4
|
Si X, Su X, Lin W, Xu J, Huang W, Chen F, Huang Z, Lin J, Chen Z. Circ_ZNF778_006 promoted ESCC progression by upregulating HIF-1α expression via sponging miR-18b-5p. Sci Rep 2023; 13:19363. [PMID: 37938614 PMCID: PMC10632521 DOI: 10.1038/s41598-023-46832-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 11/06/2023] [Indexed: 11/09/2023] Open
Abstract
In multiple malignant tumors, circular RNAs (circRNAs) are believed to play a crucial role. Our prior results demonstrated that circ_ZNF778_006 was significantly increased in esophageal squamous cell carcinoma (ESCC) tissues, but the roles of circ_ZNF778_006 in ESCC is still not clear. The expression of circ_ZNF778_006 was compared in different pathological grades of ESCC. And the expression levels of circ_ZNF778_006, miR-18b-5p, HIF-1α were analyzed by qRT-PCR and Western blot, respectively. Plasmid transfection techniques were applied to prepare ESCC cells with silenced or overexpressed genes (CircZNF778_006, miR-18b-5p). The CCK8 kit was used to determine cell proliferation, and the Transwell assay was used to measure the migration and invasion. The effects of circ_ZNF778_006 on tumor growth was investigated in vivo. Furthermore, luciferase reporter gene assay and RNA-binding protein immunoprecipitation (RIP) were performed to verify the targeting relationship between miR-18b-5p and circZNF778_006, miR-18b-5p and HIF-1α. The expression of circ_ZNF778_006 was positively correlated with pathological grade in ESCC. Circ_ZNF778_006 significantly inhibited sensitivity to 5-fluorouracil & cisplatin. It could promote the proliferation, invasion, migration in ESCC cells and accelerated tumor growth in vivo. Furthermore, circ_ZNF778_006 could upregulate the expression of HIF-1α via sponing miR-18b-5p. Circ_ZNF778_006 promoted ESCC progression by upregulating HIF-1α expression via sponging miR-18b-5p.
Collapse
Affiliation(s)
- Xianzhe Si
- Department of Gastrointestinal and Esophageal Surgery, The 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Xincheng Su
- Department of Gastrointestinal Surgery, The Union Hospital of Fujian Medical University, Fuzhou, 350000, Fujian Province, China
| | - Weijie Lin
- Department of Gastrointestinal and Esophageal Surgery, The 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Jie Xu
- Department of Gastrointestinal and Esophageal Surgery, The 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Wenbo Huang
- Department of Gastrointestinal and Esophageal Surgery, The 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Feng Chen
- Department of Gastrointestinal and Esophageal Surgery, The 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Zhijun Huang
- Department of Gastrointestinal and Esophageal Surgery, The 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.
| | - Jianqing Lin
- Department of Oncology, The 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.
| | - Zhiyao Chen
- Department of Gastrointestinal and Esophageal Surgery, The 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
5
|
Zhang W, Zhang Q, Cui Q, Xu Y. MiR-3612 targeting THBS1 suppresses nasopharyngeal carcinoma progression by PI3K/AKT signaling pathway. Hum Exp Toxicol 2023; 42:9603271221150248. [PMID: 36607163 DOI: 10.1177/09603271221150248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND MicroRNA-3612 (miR-3612) is considered a tumor suppressor in different cancers. Nonetheless, its function in nasopharyngeal carcinoma (NPC) has yet to be uncovered. METHODS NPC cells and tissues were tested by means of reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis and western blotting to quantify the expressions of miR-3612 and Thrombospondin 1 (THBS1). Cell Counting Kit-8 (CCK-8) and scratch experiments were carried out to evaluate the migration and proliferation of NPC cells. NPC cell adhesion was also assessed. The predicted interaction of miR-3612 with THBS1 was verified by means of a luciferase reporter assay. In vivo experiments were also conducted to examine how miR-3612 overexpression affects in vivo tumorigenicity. Lastly, phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway status was assessed via western blotting. RESULTS MiR-3612 was downregulated in NPC cells and tissues, whereas THBS1 expression showed an opposite trend. The MiR-3612 mimic inhibited the NPC cell proliferation, adhesion, and migration and also inactivated the PI3K/AKT signaling pathway. Furthermore, miR-3612 mimic also hampered NPC tumorigenesis in vivo. MiR-3612 targeted THBS1 and downregulated THBS1 expression. THBS1 offset the miR-3612-overexpression-induced repression of the migration, adhesion, and proliferation of NPC cells via the activation of the PI3K/AKT pathway. CONCLUSION MiR-3612 retarded NPC cell migration, adhesion, and proliferation by targeting THBS1 and inactivating the PI3K/AKT signaling pathway. This provides a novel therapeutic approach for NPC intervention.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Otolaryngology Head and Neck Surgery, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiu Zhang
- Department of Otorhinolaryngology, 593237Wuhan No. 1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Qianbo Cui
- Department of Otorhinolaryngology Head and Neck Surgery, 577528The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Molecular Diagnosis of Hubei Province, 577528The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology Head and Neck Surgery, 117921Renmin Hospital of Wuhan University, Wuhan, China.,Research Institute of Otolaryngology Head and Neck Surgery, 117921Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Ju C, He J, Wang C, Sheng J, Jia J, Du D, Li H, Zhou M, He F. Current advances and future perspectives on the functional roles and clinical implications of circular RNAs in esophageal squamous cell carcinoma: more influential than expected. Biomark Res 2022; 10:41. [PMID: 35672804 PMCID: PMC9171998 DOI: 10.1186/s40364-022-00388-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/29/2022] [Indexed: 11/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive gastrointestinal cancers with high incidence and mortality. Therefore, it is necessary to identify novel sensitive and specific biomarkers for ESCC detection and treatment. Circular RNAs (circRNAs) are a type of noncoding RNAs featured by their covalently closed circular structure. This special structure makes circRNAs more stable in mammalian cells, coupled with their great abundance and tissue specificity, suggesting circRNAs may present enormous potential to be explored as valuable prognostic and diagnostic biomarkers for tumor. Mounting studies verified the critical roles of circRNAs in regulating ESCC cells malignant behaviors. Here, we summarized the current progresses in a handful of aberrantly expressed circRNAs, and elucidated their biological function and clinical significance in ESCC, and introduced a series of databases for circRNA research. With the improved advancement in high-throughput sequencing and bioinformatics technique, new frontiers of circRNAs will pave the path for the development of precision treatment in ESCC.
Collapse
Affiliation(s)
- Chenxi Ju
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jing He
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chang Wang
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinxiu Sheng
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinlin Jia
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dan Du
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongle Li
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China.
| | - Mingxia Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Fucheng He
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
7
|
Tang B, Zhang Q, Liu K, Huang Y. Exosomal circRNA FNDC3B promotes the progression of esophageal squamous cell carcinoma by sponging miR-490-5p and regulating thioredoxin reductase 1 expression. Bioengineered 2022; 13:13829-13848. [PMID: 35703190 PMCID: PMC9275986 DOI: 10.1080/21655979.2022.2084484] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Exosomal circular RNAs (circRNAs) have been reported to play critical roles in esophageal squamous cell carcinoma (ESCC). We aimed to investigate the function of exosomal circRNA FNDC3B (circFNDC3B). The RNA levels and protein levels were examined using RT-qPCR and western blot (WB) assays. Colony formation and EdU assays were used to assess cell proliferative ability. Cell migratory and invasive abilities were detected by wound healing and transwell assays. Cell apoptosis was measured by flow cytometry. Glycolysis was measured using commercial kits. Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) were applied to examine the morphology and size of exosomes. Dual-luciferase reporter, RIP and RNA pull-down assays assessed the interaction of miR-490-5p with circFNDC3B or thioredoxin reductase 1 (TXNRD1). Xenograft tumor model determined the role of exosomal circFNDC3B in vivo. We observed that circFNDC3B was upregulated in ESCC samples and cells, as well as ESCC-derived exosomes. CircFNDC3B could be delivered via exosomes in tumor cells, and the colony formation, proliferation, migration, invasion, glycolysis, and in vivo growth ability of recipient cells were weakened after co-incubation with exosomal circFNDC3B-knockdown donor cells. CircFNDC3B was a miR-490-5p sponge, and miR-490-5p inhibition reversed the role of exosomal circFNDC3B-downregulating in ESCC cells. TXNRD1 was a miR-490-5p target, and TXNRD1 elevation weakened the anti-cancer function of miR-490-5p upregulation in ESCC cells. CircFNDC3B mediated TXNRD1 expression by interacting with miR-490-5p. In conclusion, exosomal circFNDC3B drove ESCC progression via regulating the miR-490-5p/TXNRD1 axis.AbbreviationsEC: esophageal cancer; ESCC: esophageal squamous cell carcinoma; circRNA: circular RNA; WB: western blot; TEM: transmission electron microscopy; NTA: nanoparticle tracking analysis; TXNRD1: thioredoxin reductase 1; IHC: immunohistochemistry; RT-qPCR: reverse transcription-polymerase quantitative chain reaction; GLUT1: glucose transport protein type 1; LDHA: lactate dehydrogenase A.
Collapse
Affiliation(s)
- Bo Tang
- Department of Cardio-Thoracic Surgery, Zigong Fourth People's Hospital, Zigong City, China
| | - Qingfeng Zhang
- Department of Cardio-Thoracic Surgery, Zigong Fourth People's Hospital, Zigong City, China
| | - Kui Liu
- Department of Cardio-Thoracic Surgery, Zigong Fourth People's Hospital, Zigong City, China
| | - Yun Huang
- Department of Cardio-Thoracic Surgery, Zigong Fourth People's Hospital, Zigong City, China
| |
Collapse
|
8
|
Cheng Y, Ma Z, Liu S, Yang X, Li S. CircLPAR3 knockdown suppresses esophageal squamous cell carcinoma cell oncogenic phenotypes and Warburg effect through miR-873-5p/LDHA axis. Hum Exp Toxicol 2022; 41:9603271221143695. [PMID: 36484173 DOI: 10.1177/09603271221143695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) have been identified to participate in regulating multiple malignancies. Herein, this study aimed to explore the clinical significance, biological function, and regulatory mechanisms of circRNA lysophosphatidic acid receptor 3 (circLPAR3) in esophageal squamous cell carcinoma (ESCC) cell malignant phenotypes and Warburg effect. METHODS The qRT-PCR and Western blot were used to detect the levels of genes and proteins. Glucose uptake and lactate production were detected to determine the Warburg effect. The effects of circLPAR3 on ESCC cell proliferation, apoptosis, and metastasis were evaluated by MTT, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, wound healing, and transwell assays. The binding interaction between miR-873-5p and circLPAR3 or lactate dehydrogenase A (LDHA) was verified using dual-luciferase reporter and RIP assays. Xenograft mice models were established to conduct in vivo analysis. RESULTS CircLPAR3 is a stable circRNA and was increased in ESCC tissues and cells. Functionally, circLPAR3 knockdown suppressed ESCC cell Warburg effect, proliferation, metastasis, and induced apoptosis in vitro, and impeded xenograft tumor growth and Warburg effect in ESCC mice models. Mechanistically, circLPAR3 served as a sponge for miR-873-5p, which targeted LDHA. Moreover, circLPAR3 could regulate LDHA expression by sponging miR-873-5p. Thereafter, rescue experiments suggested that miR-873-5p inhibition reversed the anticancer effects of circLPAR3 silencing on ESCC cells. Furthermore, miR-873-5p overexpression restrained ESCC cell Warburg effect and oncogenic phenotypes, which were abolished by LDHA up-regulation. CONCLUSION CircLPAR3 knockdown suppressed ESCC cell growth, metastasis, and Warburg effect by miR-873-5p/LDHA axis, implying a promising molecular target for ESCC therapy.
Collapse
Affiliation(s)
- Yao Cheng
- Department of Thoracic Surgery, 12480Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhenchuan Ma
- Department of Thoracic Surgery, 12480Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shiyuan Liu
- Department of Thoracic Surgery, 12480Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoping Yang
- Department of Thoracic Surgery, 12480Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shaomin Li
- Department of Thoracic Surgery, 12480Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|