1
|
Arabi S, Fadaee M, Kazemi T, Rahmani M. Advancements in colorectal cancer immunotherapy: from CAR-T cells to exosome-based therapies. J Drug Target 2025:1-12. [PMID: 39754507 DOI: 10.1080/1061186x.2024.2449482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/03/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Colorectal cancer (CRC) continues to be a major worldwide health issue, with elevated death rates linked to late stages of the illness. Immunotherapy has made significant progress in developing effective techniques to improve the immune system's capacity to identify and eradicate cancerous cells. This study examines the most recent advancements in CAR-T cell treatment and exosome-based immunotherapy for CRC. CAR-T cell therapy, although effective in treating blood cancers, encounters obstacles when used against solid tumours such as CRC. These obstacles include the presence of an immunosuppressive tumour microenvironment and a scarcity of tumour-specific antigens. Nevertheless, novel strategies like dual-receptor CAR-T cells and combination therapy involving cytokines have demonstrated promise in surmounting these obstacles. Exosome-based immunotherapy is a promising approach for targeted delivery of therapeutic drugs to tumour cells, with high specificity and minimal off-target effects. However, there are still obstacles to overcome in the field, such as resistance to treatment, adverse effects associated with the immune system, and the necessity for more individualised methods. The current research is focused on enhancing these therapies, enhancing the results for patients, and ultimately incorporating these innovative immunotherapeutic approaches into the standard treatment protocols for CRC.
Collapse
Affiliation(s)
- Sepideh Arabi
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Manouchehr Fadaee
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammadreza Rahmani
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
2
|
Yu X, Song X, Yan J, Xiong Z, Zheng L, Luo Y, Deng F, Zhu Y. Inhibition of triple-negative breast cancer growth via delphinidin-mediated suppression of the JAK2/STAT3/PD-L1 pathway. Food Nutr Res 2024; 68:10974. [PMID: 39781272 PMCID: PMC11708511 DOI: 10.29219/fnr.v68.10974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 01/12/2025] Open
Abstract
Background Breast cancer is a leading cause of cancer-related mortality among women globally, with triple-negative breast cancer (TNBC) being particularly aggressive. Delphinidin (Dp), an anthocyanin monomer, has shown promising health benefits. Objective This study investigates the effects of Dp on TNBC and aims to elucidate its specific mechanisms of action. Design We utilized cell counting kit-8 (CCK-8) assays, colony formation assays, and scratch assays to evaluate the influence of Dp on the proliferation and migration of TNBC cells. Flow cytometry was employed to analyze programmed cell death-ligand 1 (PD-L1) and Cluster of Differentiation 69 expression, while Western blotting assessed the levels of PD-L1, Janus Kinase 2 (JAK2), Signal Transducer and Activator of Transcription 3 (STAT3), p-JAK2, p-STAT3, and exosomal marker proteins. Additionally, enzyme-linked immunosorbent assay (ELISA) was conducted to measure concentrations of PD-L1, interferon-γ (IFN-γ), and tumor necrosis factor-β (TNF-β). Results Dp effectively inhibited TNBC cell proliferation and migration, as evidenced by CCK-8, colony formation, and scratch assays. Flow cytometry and Western blot analysis indicated a reduction in PD-L1 expression in TNBC cells. Meanwhile, we successfully isolated TNBC cell-derived exosomes, with ELISA experiments showing a decrease in PD-L1 expression in these exosomes following Dp treatment. In a co-culture system with TNBC and Jurkat cells, Dp enhanced Cluster of Differentiation 69 expression and reactivated Jurkat cells, resulting in increased secretion of IFN-γ and TNF-β. Additionally, Dp significantly reduced the p-JAK2/JAK2 and p-STAT3/STAT3 ratios in TNBC cells. Conclusion Dp may exert its anti-TNBC effects by downregulating PD-L1 expression in TNBC cells and exosomes through the JAK2/STAT3 signaling pathway, potentially restoring T cell activity and modifying the tumor microenvironment.
Collapse
Affiliation(s)
- Xiaoping Yu
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Xiaolong Song
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Jiali Yan
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Ziting Xiong
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Lujie Zheng
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Yan Luo
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Fengcheng Deng
- Thyroid Breast Surgery, Chengdu Seventh People’s Hospital, Tumor Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yanfeng Zhu
- School of Public Health, Chengdu Medical College, Chengdu, China
| |
Collapse
|
3
|
Lahouty M, Fadaee M, Shanehbandi D, Kazemi T. Exosome-driven nano-immunotherapy: revolutionizing colorectal cancer treatment. Mol Biol Rep 2024; 52:83. [PMID: 39724304 DOI: 10.1007/s11033-024-10157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
Colorectal cancer (CRC) ranks as the third most common cancer worldwide and remains a major cause of cancer-related deaths, necessitating the development of innovative therapeutic approaches beyond conventional treatment modalities. Conventional therapies, such as radiation, chemotherapy, and surgery, are hindered by challenges like imprecise targeting, substantial toxicity, and the development of resistance. Exosome-driven nano-immunotherapy has emerged as a groundbreaking approach that leverages the natural properties of exosomes-cell-derived vesicles known for their role in intercellular communication-to deliver therapeutic agents with high precision and specificity. This approach utilizes the natural ability of exosomes to serve as natural nanocarriers for various biomolecules, such as proteins, nucleic acids, and lipids, enabling precise drug delivery and immune modulation. Exosomes offer distinct advantages compared to traditional drug delivery systems, including their biocompatibility, capability to traverse biological barriers, and suitability for personalized medicine approaches. We evaluate the effectiveness of exosome-based therapies in comparison to traditional approaches, emphasizing their ability to achieve precise delivery, minimize systemic toxicity, and enhance treatment results. Despite their promise, several challenges remain, including the standardization of exosome isolation and production, optimization of cargo loading techniques, and ensuring safety and efficacy in clinical applications. By overcoming these obstacles and leveraging the distinctive characteristics of exosomes, exosome-driven nano-immunotherapy presents a promising avenue for more efficient therapeutic interventions.
Collapse
Affiliation(s)
- Masoud Lahouty
- Department of Microbiology and Virology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
4
|
Hu Q, Chen S, Deng R, Deng H, Peng M, Wang X, Deng S, Wang J, Xu B, Xu Y, Zhu H, Zheng J, Xia M, Zuo C. Exosomal PDL1 Suppresses the Anticancer Activity of CD8 + T Cells in Hepatocellular Carcinoma. Anal Cell Pathol (Amst) 2024; 2024:1608582. [PMID: 39421264 PMCID: PMC11483647 DOI: 10.1155/2024/1608582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/23/2024] [Accepted: 08/17/2024] [Indexed: 10/19/2024] Open
Abstract
Tumor microenvironment (TME) is essential for the development and progression of hepatocellular carcinoma (HCC). Exosomes participate in constructing TME by passing biological information, but the regulatory effect of PDL1 in exosomes on anticancer activity of CD8+ T cells in HCC still needs to be further explored. In this study, high level of PDL1 was found in plasma exosomes of HCC patients, which turned out to be significantly associated with the increased number of tumor nodules, the upregulated level of serum AFP, the raised tendency of TNM stage, and the poor prognosis of HCC. The expression of CD8 may be inhibited in HCC that is characterized with high level of PDL1, and the protein level of exosomal PDL1 was determined by intracellular PDL1 abundance. High level of exosomal PDL1 inhibited the proliferation and activation of CD8+ T cells, but exhibited limited effect on the proliferation of hepatic cancer cells. Moreover, the growth of tumors formed by hepatic cancer cells Hepa1-6 in C57L mice was significantly promoted by the exosomal PDL1, which might be caused by the inhibitory effect of exosomal PDL1 on CD8+ T cells. Thus, exosomal PDL1 promotes the development and progression of HCC through inhibiting the anticancer activity of CD8+ T cells. This study provides sights for understanding the oncogenic role of PDL1 and a reasonable explanation for the low efficacy of anti-PD1/PDL1 immunotherapies in HCC.
Collapse
Affiliation(s)
- Qi Hu
- Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Shuai Chen
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Rilin Deng
- Hunan Normal University School of Medicine, Changsha 410013, Hunan, China
| | - Hongyu Deng
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Joint Research Center of Liver Cancer, Laboratory of Digestive Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Clinical Research Center for Tumor of Pancreaticobiliary Duodenal Junction in Hunan Provincial, Central South University, Changsha 410013, Hunan, China
| | - Mingjing Peng
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Joint Research Center of Liver Cancer, Laboratory of Digestive Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Clinical Research Center for Tumor of Pancreaticobiliary Duodenal Junction in Hunan Provincial, Central South University, Changsha 410013, Hunan, China
| | - Xiaohong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, Hainan, China
| | - Shun Deng
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Joint Research Center of Liver Cancer, Laboratory of Digestive Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Clinical Research Center for Tumor of Pancreaticobiliary Duodenal Junction in Hunan Provincial, Central South University, Changsha 410013, Hunan, China
| | - Jinfeng Wang
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Joint Research Center of Liver Cancer, Laboratory of Digestive Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Clinical Research Center for Tumor of Pancreaticobiliary Duodenal Junction in Hunan Provincial, Central South University, Changsha 410013, Hunan, China
| | - Biaoming Xu
- Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yan Xu
- Hunan Normal University School of Medicine, Changsha 410013, Hunan, China
| | - Haizhen Zhu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, Hainan, China
| | - Jinhai Zheng
- School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan, China
| | - Man Xia
- Department of Gynecological Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School Medicine, Central South University, Changsha 410013, Hunan, China
| | - Chaohui Zuo
- Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Joint Research Center of Liver Cancer, Laboratory of Digestive Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Clinical Research Center for Tumor of Pancreaticobiliary Duodenal Junction in Hunan Provincial, Central South University, Changsha 410013, Hunan, China
| |
Collapse
|
5
|
Yang P, He S, Ye L, Weng H. Transcription Factor ETV4 Activates AURKA to Promote PD-L1 Expression and Mediate Immune Escape in Lung Adenocarcinoma. Int Arch Allergy Immunol 2024; 185:910-920. [PMID: 38781935 DOI: 10.1159/000537754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION The occurrence and progression of lung adenocarcinoma (LUAD) impair T-cell immune responses, causing immune escape and subsequently affecting the efficacy of immunotherapy in patients. Aurora kinase A (AURKA) is upregulated in varying cancers, but its role in LUAD immune escape is elusive. This work attempted to explore molecular mechanisms of AURKA regulation in LUAD immune escape. METHODS Through bioinformatics analysis, AURKA level in LUAD was evaluated, and potential upstream transcription factors of AURKA were predicted using hTFtarget. ETS variant transcription factor 4 (ETV4) expression in LUAD was analyzed through The Cancer Genome Atlas. Pearson's correlation analysis was then utilized to test the correlation between AURKA and ETV4. Interaction and binding between AURKA and ETV4 were validated through dual-luciferase assay and chromatin immunoprecipitation. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) tested relative mRNA expression of AURKA and ETV4 in LUAD cells, cell counting kit-8 assayed cell viability, and Western blot analysis was conducted to determine the protein level of programmed death-ligand 1 (PD-L1). Coculture of LUAD cells with activated CD8+ T cells was carried out, and an LDH assay was used to assess the cytotoxicity of CD8+ T cells against LUAD cells. Interferon-γ (IFN-γ), interleukin-2 (IL-2), and tumor necrosis factor-α (TNF-α) levels in the coculture system were assessed by enzyme-linked immunosorbent assay (ELISA). Western blot assessed protein levels of JAK2, p-JAK2, STAT3, and p-STAT3. RESULTS Compared to normal tissues, AURKA and ETV4 were upregulated in tumor tissues, and AURKA presented a negative association with CD8+ T-cell immune infiltration but a positive association with PD-L1. qRT-PCR unveiled significantly upregulated mRNA of AURKA and ETV4 in LUAD cells compared to normal lung epithelial cells. Knockdown of AURKA significantly decreased cell viability and PD-L1 protein level in LUAD cells, enhanced cytotoxicity of CD8+ T cells against LUAD cells and IFN-γ, IL-2, and TNF-α expression, while overexpression of AURKA yielded opposite results. Furthermore, the knockdown of ETV4 could reverse the oncogenic characteristics of cells caused by AURKA overexpression. CONCLUSION Our study illustrated that ETV4/AURKA axis promoted PD-L1 expression, suppressed CD8+ T-cell activity, and mediated immune escape in LUAD by regulating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Ping Yang
- Department of Respiratory and Critical Care Medicine, People's Hospital of Fujian Province, Fuzhou, China
| | - Shangxiang He
- Department of Medical Oncology, Shanghai Artemed Hospital, Shanghai, China
| | - Ling Ye
- Department of Respiratory and Critical Care Medicine, People's Hospital of Fujian Province, Fuzhou, China
| | - Heng Weng
- Department of Respiratory and Critical Care Medicine, People's Hospital of Fujian Province, Fuzhou, China
| |
Collapse
|
6
|
Huan R, Zhang J, Yue J, Yang S, Han G, Cheng Y, Tan Y. Orexin-A mediates glioblastoma proliferation inhibition by increasing ferroptosis triggered by unstable iron pools and GPX4 depletion. J Cell Mol Med 2024; 28:e18318. [PMID: 38685674 PMCID: PMC11058333 DOI: 10.1111/jcmm.18318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Glioblastoma (GBM) represents a prevalent form of primary malignant tumours in the central nervous system, but the options for effective treatment are extremely limited. Ferroptosis, as the most enriched programmed cell death process in glioma, makes a critical difference in glioma progression. Consequently, inducing ferroptosis has become an appealing strategy for tackling gliomas. Through the utilization of multi-omics sequencing data analysis, flow cytometry, MDA detection and transmission electron microscopy, the impact of orexin-A on ferroptosis in GBM was assessed. In this report, we provide the first evidence that orexin-A exerts inhibitory effects on GBM proliferation via the induction of ferroptosis. This induction is achieved by instigating an unsustainable increase in iron levels and depletion of GPX4. Moreover, the regulation of TFRC, FTH1 and GPX4 expression through the targeting of NFE2L2 appears to be one of the potential mechanisms underlying orexin-A-induced ferroptosis.
Collapse
Affiliation(s)
- Rengzheng Huan
- Department of NeurosurgeryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jiqin Zhang
- Department of AnesthesiologyGuizhou Provincial People's HospitalGuiyangChina
| | - Jianhe Yue
- Department of NeurosurgeryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Sha Yang
- Department of biomedical sciencesMedical College of Guizhou UniversityGuiyangChina
| | - Guoqiang Han
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Yuan Cheng
- Department of NeurosurgeryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ying Tan
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| |
Collapse
|
7
|
Chen M, Wang S. Preclinical development and clinical studies of targeted JAK/STAT combined Anti-PD-1/PD-L1 therapy. Int Immunopharmacol 2024; 130:111717. [PMID: 38387193 DOI: 10.1016/j.intimp.2024.111717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Programmed cell death protein 1 (PD-1) binds to its ligand to help tumours evade the immune system and promote tumour progression. Although anti-PD-1/PD-L1 therapies show powerful effects in some patients, most patients are unable to benefit from this treatment due to treatment resistance. Therefore, it is important to overcome tumour resistance to PD-1/PD-L1 blockade. There is substantial evidence suggesting that the JAK/STAT signalling pathway plays a significant role in PD-1/PD-L1 expression and anti-PD-1/PD-L1 treatment. Herein, we describe the effects of the JAK/STAT signalling pathway on PD-1/PD-L1. Subsequently, the relationship between molecular mutations in the JAK/STAT signalling pathway and immune resistance was analysed. Finally, the latest advancements in drugs targeting the JAK/STAT pathway combined with PD1/PD-L1 inhibitors are summarised.
Collapse
Affiliation(s)
- Miaomiao Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Siliang Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
8
|
Guo X, Wen J, Gao Q, Zhao Y, Zhao Y, Wang C, Xu N, Shao Y, Chang X. Orexin-A/OX1R is involved in regulation of autophagy to promote cortisol secretion in adrenocortical cell. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166844. [PMID: 37572990 DOI: 10.1016/j.bbadis.2023.166844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Hypercortisolism has emerged as a prominent clinical condition worldwide caused by biochemical cortisol excess in patients, and optimization treatment is needed urgently in the clinic. Previously, we observed that orexin-A/orexin type 1 receptor (OX1R) promoted cell proliferation, inhibited apoptosis, and increased cortisol release in adrenocortical cells. However, the functions of orexin-A/OX1R on autophagy and its molecular mechanism are not known. METHODS Transmission electron microscopy and confocal microscope were performed to detect autophagosomes. Western blot were performed to detect autophagy proteins. The cortisol concentration was assessed with an ELISA. FINDINGS Our data demonstrated that orexin-A/OX1R activated the mammalian target of rapamycin/p70 ribosomal protein S6 kinase-1 pathway, thereby inhibiting autophagy in H295R cells and Y-1 cells. Furthermore, the orexin-A/OX1R-mediated suppression of autophagy played a crucial role in cortisol secretion. Mechanistically, the expression of 3β-hydroxysteroid dehydrogenase/isomerase, the rate-limiting enzyme in cortisol synthesis, was increased with autophagy inhibition mediated by orexin-A/OX1R. INTERPRETATION This study provided the evidence that orexin-A/OX1R participated in modulating mTOR/p70S6K1/autophagy signaling pathway to promote cortisol secretion in adrenocortical cell. The findings suggest the mechanistic basis for disorders of cortisol secretion, providing the potential therapeutic targets for hypercortisolism treatment. FUND: This work was supported by National Natural Science Foundation of China (32170603, 31871286), the Doctoral Start-up Foundation of Liaoning Province (20180540008, 2019-BS-298), the Natural Science Foundation of Liaoning Province (2019-ZD-0779), and Shenyang Science and Technology Plan Fund Projects (21-173-9-28).
Collapse
Affiliation(s)
- Xin Guo
- Department of Pediatrics, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, PR China
| | - Jing Wen
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, PR China
| | - Qianqian Gao
- Department of the First Obstetric Ward, Wei Fang People's Hospital, Weifang, Shandong 261041, PR China
| | - Yuyan Zhao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110032, PR China
| | - Yue Zhao
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Chunyu Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Na Xu
- Natural Sciences Department, LaGuardia Community College (City University of New York), 31-10 Thomson Ave, Long Island City, NY 11101, USA
| | - Yaozhong Shao
- The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shanxi 710061, PR China
| | - Xiaocen Chang
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, PR China.
| |
Collapse
|
9
|
Luo X, Du G, Long Y, Zheng M, Chen B, Li W, Yan G, Qi Z, Lan T. Programmed Death Ligand-1-Overexpressing Donor Exosomes Mediate Donor-Specific Immunosuppression by Delivering Co-Inhibitory Signals to Donor-Specific T Cells. Adv Healthc Mater 2023; 12:e2300670. [PMID: 37220874 DOI: 10.1002/adhm.202300670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/21/2023] [Indexed: 05/25/2023]
Abstract
Programmed death ligand-1 (PD-L1) and donor antigens are critical for donor immature dendritic cells (DCs) targeting donor-specific T cells to induce transplant tolerance. This study aims to clarify whether DC-derived exosomes (DEX) with donor antigens (H2b) and high levels of PD-L1 expression (DEXPDL1+ ) can help to suppress graft rejection. In this study, it is demonstrated that DEXPDL1+ presents donor antigens, as well as PD-L1 co-inhibitory signals, directly or semi-directly via DCs to H2b-reactive T cells. This dual signal presentation can prolong the survival of heart grafts from B6 (H2b) mice but not from C3H (H2k) mice by inhibiting T cell activation, inducing activated T cell apoptosis, and modulating the balance of T cell differentiation from inflammatory to regulatory. Additionally, even though DEXPDL1+ treatment cannot induce tolerance after short-term treatment, this study provides a new vehicle for presenting co-inhibitory signals to donor-specific T cells. This novel strategy may facilitate the realization of donor-specific tolerance via the further optimization of drug-loading combinations and therapeutic regimens to elevate their killing ability.
Collapse
Affiliation(s)
- Xuewei Luo
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, Fujian Province, 361023, P. R. China
- School of Medicine, Xiamen University, Xiamen, 361005, P. R. China
| | - Guicheng Du
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, Fujian Province, 361023, P. R. China
| | - Yufei Long
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, Fujian Province, 361023, P. R. China
- Medicinal College of Guangxi University, Nanning, Guangxi Province, 530004, P. R. China
| | - Mengchao Zheng
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, Fujian Province, 361023, P. R. China
- Medicinal College of Guangxi University, Nanning, Guangxi Province, 530004, P. R. China
| | - Bingye Chen
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, Fujian Province, 361023, P. R. China
| | - Weiting Li
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, Fujian Province, 361023, P. R. China
| | - Guoliang Yan
- School of Medicine, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhongquan Qi
- Medicinal College of Guangxi University, Nanning, Guangxi Province, 530004, P. R. China
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, 361023, P. R. China
- Wuzhou Workers' Hospital, No. 1, South 3rd Lane, Gaodi Road, Wanxiu District Wuzhou, Guangxi, 543000, P. R. China
| | - Tianshu Lan
- Institute of Respiratory Diseases, Xiamen Medical College, Xiamen, Fujian Province, 361023, P. R. China
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, 361023, P. R. China
| |
Collapse
|
10
|
Hypocretin-1 suppresses malignant progression of glioblastoma cells through Notch1 signaling pathway. Brain Res Bull 2023; 196:46-58. [PMID: 36925051 DOI: 10.1016/j.brainresbull.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Hypocretin-1 is a multifunctional neuropeptide that has been identified as a potential antitumor agent for its role in inhibiting tumor growth, including in colon cancer, neuroendocrine tumor, and prostate cancer. However, the role and mechanism of hypocretin-1 in the occurrence and development of malignant glioma have not been well studied. Therefore, we investigated the effect of hypocretin-1 on glioblastoma proliferation, apoptosis, migration and invasion and its mechanism. We found that the hypocretin-1 receptor was expressed in both glioma cell lines and glioma tissues. Hypocretin-1 treatment can inhibit glioblastoma cell proliferation, migration and invasion, and induce cell apoptosis. Meanwhile, hypocretin-1 treatment significantly reduces tumor growth rate and tumor weight. In addition, mechanistic studies have found that hypocretin-1 exerts antitumor effects by inhibiting NOTCH signaling pathway. Overexpression of NICD significantly reversed the antitumor effect of hypocretin on glioblastoma. Taken together, these findings suggest that hypocretin-1 inhibits glioblastoma proliferation, migration and invasion and induces apoptosis in vitro and in vivo through NOTCH signaling pathway.
Collapse
|
11
|
Downregulation of SLC9A8 Promotes Epithelial-Mesenchymal Transition and Metastasis in Colorectal Cancer Cells via the IL6-JAK1/STAT3 Signaling Pathway. Dig Dis Sci 2022; 68:1873-1884. [PMID: 36583805 DOI: 10.1007/s10620-022-07805-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND SLC9A8 has been shown to be involved in mucus layer formation, intestinal mucosal integrity, and hyperproliferation of colitis-associated tumor development. However, its effects on the epithelial-mesenchymal transition (EMT) and the metastasis of colorectal cancer (CRC) remain unknown. AIMS To explore whether SLC9A8 participates in EMT and the metastasis of CRC. METHODS Western blotting and immunohistochemistry were performed to evaluate the expression of SLC9A8 in CRC patients. At the cellular level, the effect of SLC9A8 on proliferation, migration, and invasion was measured using cell viability analysis, flow cytometry analysis, and Transwell assays. Mouse tumor xenograft and metastasis models were established to analyze whether knockdown of SLC9A8 increased tumor volume, tumor weight, and metastasis. Moreover, whether downregulated expression of SLC9A8 promotes EMT via activation of the IL6-JAK1-STAT3 signaling pathway was investigated. RESULTS SLC9A8 protein was downregulated in CRC tissues, and this downregulation was significantly associated with tumor size, lymph node status, pTNM stage, and poor prognosis. SLC9A8 overexpression markedly suppressed cell proliferation, migration, and invasion. Downregulation of SLC9A8 promoted CRC cell proliferation, migration, and invasion. Moreover, knockdown of SLC9A8 also increased tumor volume, tumor weight, and metastasis in vivo. Meanwhile, downregulation of SLC9A8 significantly promoted the in vitro migration of CRC cells via EMT by activating the IL6-JAK1/STAT3 signaling pathway. CONCLUSIONS Downregulation of SLC9A8 plays an important role in EMT and metastasis of CRC progression and may become a new potential therapeutic target for the treatment of CRC.
Collapse
|
12
|
Exosomes carrying immune checkpoints, a promising therapeutic approach in cancer treatment. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:183. [PMID: 36071295 DOI: 10.1007/s12032-022-01781-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 10/14/2022]
Abstract
Exosomes are a subgroup of extracellular vesicles generated by distinct cells. Tumor-derived extracellular vesicles convey immunological checkpoint molecules. TEXs as critical mediators in tumor development, metastasis, and immune escape have recently become the focus of scientific research. Exosomes are involved in the regulation of the immune system. Exosomes interact with target cells in the tumor microenvironment, changing their function based on the cargo they contain. Exosomal immune checkpoints might be exploited to track tumor immune evasion, treatment response, and patient prognosis while enhancing tumor cell proliferation and spread. This review focuses on tumor-derived exosomes, their immunosuppressive effects in mice models, and their role in cancer immunotherapy. Exosomes are being studied as possible cancer vaccines, with numerous uses in tumor immunotherapy. Exosomes can carry chemotherapeutics, siRNA, and monoclonal antibodies. Exosomes produced by macrophages might be used to treat cancer. These and other clinical consequences provide new doors for cancer treatment.
Collapse
|