1
|
de Jesus LCL, Freitas ADS, Dutra JDCF, Campos GM, Américo MF, Laguna JG, Dornelas EG, Carvalho RDDO, Vital KD, Fernandes SOA, Cardoso VN, de Oliveira JS, de Oliveira MFA, Faria AMC, Ferreira E, Souza RDO, Martins FS, Barroso FAL, Azevedo V. Lactobacillus delbrueckii CIDCA 133 fermented milk modulates inflammation and gut microbiota to alleviate acute colitis. Food Res Int 2024; 186:114322. [PMID: 38729712 DOI: 10.1016/j.foodres.2024.114322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Lactobacillus delbrueckii subsp. lactis CIDCA 133 is a health-promoting bacterium that can alleviate gut inflammation and improve the epithelial barrier in a mouse model of mucositis. Despite these beneficial effects, the protective potential of this strain in other inflammation models, such as inflammatory bowel disease, remains unexplored. Herein, we examined for the first time the efficacy of Lactobacillus delbrueckii CIDCA 133 incorporated into a fermented milk formulation in the recovery of inflammation, epithelial damage, and restoration of gut microbiota in mice with dextran sulfate sodium-induced colitis. Oral administration of Lactobacillus delbrueckii CIDCA 133 fermented milk relieved colitis by decreasing levels of inflammatory factors (myeloperoxidase, N-acetyl-β-D-glucosaminidase, toll-like receptor 2, nuclear factor-κB, interleukins 10 and 6, and tumor necrosis factor), secretory immunoglobulin A levels, and intestinal paracellular permeability. This immunobiotic also modulated the expression of tight junction proteins (zonulin and occludin) and the activation of short-chain fatty acids-related receptors (G-protein coupled receptors 43 and 109A). Colonic protection was effectively associated with acetate production and restoration of gut microbiota composition. Treatment with Lactobacillus delbrueckii CIDCA 133 fermented milk increased the abundance of Firmicutes members (Lactobacillus genus) while decreasing the abundance of Proteobacteria (Helicobacter genus) and Bacteroidetes members (Bacteroides genus). These promising outcomes influenced the mice's mucosal healing, colon length, body weight, and disease activity index, demonstrating that this immunobiotic could be explored as an alternative approach for managing inflammatory bowel disease.
Collapse
Affiliation(s)
- Luís Cláudio Lima de Jesus
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Andria Dos Santos Freitas
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Joyce da Cruz Ferraz Dutra
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriela Munis Campos
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Monique Ferrary Américo
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Guimarães Laguna
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | - Evandro Gonçalves Dornelas
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil
| | | | - Kátia Duarte Vital
- Federal University of Minas Gerais, Department of Clinical and Toxicological Analysis, Belo Horizonte, Minas Gerais, Brazil
| | | | - Valbert Nascimento Cardoso
- Federal University of Minas Gerais, Department of Clinical and Toxicological Analysis, Belo Horizonte, Minas Gerais, Brazil
| | - Jamil Silvano de Oliveira
- Federal University of Minas Gerais, Department of Biochemistry and Immunology, Belo Horizonte, Minas Gerais, Brazil
| | | | - Ana Maria Caetano Faria
- Federal University of Minas Gerais, Department of Biochemistry and Immunology, Belo Horizonte, Minas Gerais, Brazil
| | - Enio Ferreira
- Federal University of Minas Gerais, Department of General Pathology, Belo Horizonte, Minas Gerais, Brazil
| | - Ramon de Oliveira Souza
- Federal University of Minas Gerais, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil; Ezequiel Dias Foundation, Research and Development Board, Belo Horizonte, Minas Gerais, Brazil
| | - Flaviano Santos Martins
- Federal University of Minas Gerais, Department of Microbiology, Belo Horizonte, Minas Gerais, Brazil
| | | | - Vasco Azevedo
- Federal University of Minas Gerais, Department of Genetics, Ecology, and Evolution, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Shukla P, Sakure A, Basaiawmoit B, Khakhariya R, Maurya R, Bishnoi M, Kondepudi KK, Liu Z, Padhi S, Rai AK, Hati S. Molecular binding mechanism and novel antidiabetic and anti-hypertensive bioactive peptides from fermented camel milk with anti-inflammatory activity in raw macrophages cell lines. Amino Acids 2023; 55:1621-1640. [PMID: 37749439 DOI: 10.1007/s00726-023-03335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
The investigation was to determine the effect of camel milk fermented with Limosilactobacillus fermentum KGL4 (MTCC 25515) on ACE-inhibiting, anti-inflammatory, and diabetes-preventing properties and also to release the novel peptides with antidiabetic and anti-hypertensive attributes with molecular interaction studies. Growth conditions were optimised on the basis of total peptide production by inoculating the culture in camel milk at different rates (1.5, 2.0, and 2.5%) along with different incubation periods (12, 24, 36, and 48 h). However, after 48 h of fermentation with a 2.5% rate of inoculum, the highest proteolytic activity was obtained. Reverse phase high-pressure liquid chromatography (RP-HPLC) was used to calculate the % Rpa from permeates of 3 kDa and 10 kDa fractions. Molecular weight distributions of fermented and unfermented camel milk protein fractions were compared using SDS-PAGE. Spots obtained from 2D gel electrophoresis were separated on the basis of pH and molecular weight. Spots obtained from 2D gel were digested with trypsin, and the digested samples were subjected to RP-LC/MS for the generation of peptide sequences. The inhibition of tumour necrosis factor alpha, interleukin-6, and interleukin-1 during fermentation was studied using RAW 264.7 macrophages. In the study, fermented camel milk with KGL4 (CMKGL4) inhibited LPS-induced nitric oxide (NO) production and pro-inflammatory cytokine production (TNF-α, IL-6, and IL-1β) by the murine macrophages. The results showed that the peptide structures (YLEELHRLNK and YLQELYPHSSLKVRPILK) exhibited considerable binding affinity against hPAM and hMGA during molecular interaction studies.
Collapse
Affiliation(s)
- Pratik Shukla
- Dairy Microbiology Department, SMC College of Dairy Science, Kamdhenu University, Anand, 388110, Gujarat, India
| | - Amar Sakure
- Department of Plant Biotechnology, B.A College of Agriculture, Anand Agricultural University, Anand, 388110, Gujarat, India
| | - Bethsheba Basaiawmoit
- Dept. of Rural Development and Agricultural Production, North-Eastern Hill University, Tura Campus, Chasingre, 794002, Meghalaya, India
| | - Ruchita Khakhariya
- Dairy Microbiology Department, SMC College of Dairy Science, Kamdhenu University, Anand, 388110, Gujarat, India
| | - Ruchika Maurya
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, 140306, Punjab, India
- Regional Center for Biotechnology, Faridabad, 121001, Haryana, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, 140306, Punjab, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, 140306, Punjab, India
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, 18, Xi'an, 710021, China
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, 737102, Sikkim, India
| | - Amit Kumar Rai
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, 140306, Punjab, India
| | - Subrota Hati
- Dairy Microbiology Department, SMC College of Dairy Science, Kamdhenu University, Anand, 388110, Gujarat, India.
| |
Collapse
|
3
|
Sumi K, Tagawa R, Yamazaki K, Nakayama K, Ichimura T, Sanbongi C, Nakazato K. Nutritional Value of Yogurt as a Protein Source: Digestibility/Absorbability and Effects on Skeletal Muscle. Nutrients 2023; 15:4366. [PMID: 37892442 PMCID: PMC10609537 DOI: 10.3390/nu15204366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Yogurt is a traditional fermented food that is accepted worldwide for its high palatability and various health values. The milk protein contained in yogurt exhibits different physical and biological properties from those of non-fermented milk protein due to the fermentation and manufacturing processes. These differences are suggested to affect the time it takes to digest and absorb milk protein, which in turn will influence the blood levels of amino acids and/or hormones, such as insulin, and thereby, the rate of skeletal muscle protein synthesis via the activation of intracellular signaling, such as the mTORC1 pathway. In addition, based on the relationship between gut microbiota and skeletal muscle conditions, yogurt, including lactic acid bacteria and its metabolites, has been evaluated for its role as a protein source. However, the substantial value of yogurt as a protein source and the additional health benefits on skeletal muscle are not fully understood. The purpose of this review is to summarize the research to date on the digestion and absorption characteristics of yogurt protein, its effect on skeletal muscle, and the contribution of lactic acid bacterial fermentation to these effects.
Collapse
Affiliation(s)
- Koichiro Sumi
- Nutrition and Food Function Research Department, Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Nanakuni, Hachioji 192-0919, Japan
| | - Ryoichi Tagawa
- Nutrition and Food Function Research Department, Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Nanakuni, Hachioji 192-0919, Japan
| | - Kae Yamazaki
- Nutrition and Food Function Research Department, Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Nanakuni, Hachioji 192-0919, Japan
| | - Kyosuke Nakayama
- Nutrition and Food Function Research Department, Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Nanakuni, Hachioji 192-0919, Japan
| | - Takefumi Ichimura
- Next Generation Monozukuri Research Department, Food Science & Technology Research Laboratories, R&D Division, Meiji Co., Ltd., Nanakuni, Hachioji 192-0919, Japan
| | - Chiaki Sanbongi
- Nutrition and Food Function Research Department, Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Nanakuni, Hachioji 192-0919, Japan
| | - Koichi Nakazato
- Department of Exercise Physiology, Nippon Sports Science University, 7-1-1 Fukasawa, Setagaya-ku, Tokyo 158-8508, Japan;
| |
Collapse
|
4
|
Sánchez-Moya T, Ydjedd S, Frontela-Saseta C, López Nicolás R, Ros-Berruezo G. [Anti-inflammatory effect of milk whey from different species after in vitro digestion]. NUTR HOSP 2023. [PMID: 37073738 DOI: 10.20960/nh.04451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
INTRODUCTION there is a close relationship between obesity, gut health and immune system. A low-grade of inflammation, which could precede obesity, may have implications for the development of metabolic syndrome and insulin resistance. OBJECTIVE analyzing the anti-inflammatory capacity of several types of whey (cow, sheep, goat and a mixture of them). METHODS an in vitro model of intestinal inflammation employing a cell co-culture (Caco-2 and RAW 264.7) was performed after an in vitro digestion and fermentation (simulating mouth-to-colon conditions). Inflammatory markers such as IL-8 and TNF-α, as well as the transepithelial electrical resistance (TEER) of Caco-2 monolayer, were determined. RESULTS digested and fermented whey had a protective effect on cell permeability, being lower in the case of fermented goat whey and mixture. The anti-inflammatory activity of whey was greater the more digestion progressed. Fermented whey showed the greatest anti-inflammatory effect, inhibiting IL-8 and TNF-α secretion, probably due to its composition (protein degradation products such as peptides and amino acids, and SCFA). However, fermented goat whey did not show this degree of inhibition, perhaps due to its low SCFA concentration. CONCLUSION milk whey, especially after being fermented in the colon, can be useful nutritional strategy to preserve the intestinal barrier and mitigate the low-grade of inflammation that characterizes metabolic disorders and obesity.
Collapse
Affiliation(s)
- Teresa Sánchez-Moya
- Departamento de Tecnología de los Alimentos, Nutrición y Bromatología. Facultad de Veterinaria. Campus de Excelencia Internacional "Campus Mare Nostrum". Universidad de Murcia
| | - Siham Ydjedd
- Laboratoire de Biochimie Appliquée. Faculté des Sciences de la Nature et de la Vie. Universitè de Bejaia
| | - Carmen Frontela-Saseta
- Departamento de Tecnología de los Alimentos, Nutrición y Bromatología. Facultad de Veterinaria. Campus de Excelencia Internacional "Campus Mare Nostrum". Universidad de Murcia
| | - Rubén López Nicolás
- Departamento de Tecnología de los Alimentos, Nutrición y Bromatología. Facultad de Veterinaria. Campus de Excelencia Internacional "Campus Mare Nostrum". Universidad de Murcia
| | - Gaspar Ros-Berruezo
- Departamento de Tecnología de Alimentos, Nutrición y Bromatología. Área de Conocimiento de Nutrición y Bromatología. Campus Universitario de Espinardo. Universidad de Murcia
| |
Collapse
|
5
|
Effect of Salt Concentration on Flavor Characteristics and Physicochemical Quality of Pickled Brassica napus. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
This study aimed to elaborate on the role of salt concentration on pickled Brassica napus leaf and stem (BLS); it also contributed to the development of low-salt and healthy Brassica napus products in the harvest period. Five sets of pickled BLS samples were prepared, and the physicochemical parameters, free amino acids (FAAs), and the volatile flavor components (VFCs) were analyzed after fermentation. Results showed that some antioxidants, FAAs, and VFCs underwent dynamic changes during fermentation. Nitrite increased with an increase in the salt concentration used for fermentation. Pickled BLS contained a wide range of FAAs; a total of 23 were detected, which might be used as a source of amino acid supplementation. The VFCs were analyzed via headspace solid-phase micro-extraction (HS-SPME) combined with gas chromatography and mass spectrometry (GC-MS). A total of 51 VFCs were tentatively identified. The contribution to flavor could be expressed by the relative odor activity value (ROAV). Salt is one of the important factors affecting the quality of vegetable fermentation. Therefore, for large-scale pickled BLS production, a key issue is to balance the low salt concentration and high fermentation quality. Under the action of salt and microorganisms, the fresh BLS fermented via dry pickling, which not only improved its FAAs and VFCs, endowed the production with a unique flavor, but also prolonged the shelf life.
Collapse
|
6
|
Zhou R, Qian Y, Lei Z, Tang Y, Li Y. Production and characterization of exopolysaccharides from salinity-induced Auxenochlorella protothecoides and the analysis of anti-inflammatory activity. Int J Biol Macromol 2023; 240:124217. [PMID: 37001784 DOI: 10.1016/j.ijbiomac.2023.124217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/16/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
The set scenario of this work was to investigate the production, physicochemical characteristics, and anti-inflammatory activities of exopolysaccharides from salinity-induced Auxenochlorella protothecoides. The results demonstrated that 10 ‰ salinity manipulation endowed preferable exopolysaccharide production by A. protothecoides. Under this salinity stress, ACPEPS1A and ACPEPS2A were purified from exopolysaccharide production by anion chromatography and molecular exclusion chromatography. ACPEPS1A exhibited a molecular weight (Mw) of 132 kDa and mainly consisted of galactose. ACPEPS2A was a heteropolysaccharide with an Mw of 170 kDa and the main monosaccharides of galactose and rhamnose with separate molar percents of 42.41 % and 35.29 %, respectively. FTIR, 1H and 13C NMR supported that monosaccharide components of ACPEPS1A and ACPEPS2A possessed both α- and β-configuration pyranose rings. Further evidence indicated that ACPEPS1A and ACPEPS2A could effectively inhibit the inflammatory response in lipopolysaccharide (LPS) induced RAW264.7 cells by quenching inflammatory factor levels such as ROS, iNOS, TNF-α, and IL-6. The potential anti-inflammatory possibilities were that the monosaccharides of ACPEPS1A and ACPEPS2A possessed higher affinity with receptors on the macrophage surface than LPS and hampered LPS-induced inflammation. The findings of this work would favor innovative applications of exopolysaccharides from microalgae in complementary medicines or functional foods.
Collapse
|
7
|
Al-Beltagi M, Saeed NK, Bediwy AS, Elbeltagi R. Cow’s milk-induced gastrointestinal disorders: From infancy to adulthood. World J Clin Pediatr 2022; 11:437-454. [PMID: 36439902 PMCID: PMC9685681 DOI: 10.5409/wjcp.v11.i6.437] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/01/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Milk is related to many gastrointestinal disorders from the cradle to the grave due to the many milk ingredients that can trigger gastrointestinal discomfort and disorders. Cow’s milk protein allergy (CMPA) is the most common food allergy, especially in infancy and childhood, which may persist into adulthood. There are three main types of CMPA; immunoglobulin E (IgE)-mediated CMPA, non-IgE-mediated CMPA, and mixed type. CMPA appears before the first birthday in almost all cases. Symptoms may start even during the neonatal period and can be severe enough to simulate neonatal sepsis. CMPA (often non-IgE mediated) can present with symptoms of gastroesophageal reflux, eosinophilic esophagitis, hemorrhagic gastritis, food protein-induced protein-losing enteropathy, and food protein-induced enterocolitis syndrome. Most CMPAs are benign and outgrown during childhood. CMPA is not as common in adults as in children, but when present, it is usually severe with a protracted course. Lactose intolerance is a prevalent condition characterized by the development of many symptoms related to the consumption of foods containing lactose. Lactose intolerance has four typical types: Developmental, congenital, primary, and secondary. Lactose intolerance and CMPA may be the underlying pathophysiologic mechanisms for many functional gastrointestinal disorders in children and adults. They are also common in inflammatory bowel diseases. Milk consumption may have preventive or promoter effects on cancer development. Milk may also become a source of microbial infection in humans, causing a wide array of diseases, and may help increase the prevalence of antimicrobial resistance. This editorial summarizes the common milk-related disorders and their symptoms from childhood to adulthood.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Algharbia, Egypt
- Department of Pediatrics, University Medical Center, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Department of Pathology, Microbiology Section, Salmaniya Medical Complex, Manama 26671, Bahrain
- Department of Pathology, Microbiology Section, Royal College of Surgeons in Ireland - Bahrain, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Chest Diseases, Faculty of Medicine, Tanta University, Tanta 31527, Algharbia, Egypt
- Department of Chest Diseases, University Medical Center, Arabian Gulf University, Manama 26671, Bahrain
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland - Bahrain, Busiateen 15503, Muharraq, Bahrain
| |
Collapse
|
8
|
Wu Y, Wang Y, Hu A, Shu X, Huang W, Liu J, Wang B, Zhang R, Yue M, Yang C. Lactobacillus plantarum-derived postbiotics prevent Salmonella-induced neurological dysfunctions by modulating gut-brain axis in mice. Front Nutr 2022; 9:946096. [PMID: 35967771 PMCID: PMC9365972 DOI: 10.3389/fnut.2022.946096] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/20/2022] [Indexed: 01/04/2023] Open
Abstract
Postbiotics are the inactive bacteria and/or metabolites of beneficial microbes which have been recently found to be as effective as their live probiotic. This study aimed to evaluate the benefits of Lactobacillus plantarum (LP)-derived postbiotics on ameliorating Salmonella-induced neurological dysfunctions. Mice were pretreated with LP postbiotics (heat-killed bacteria or the metabolites) or active bacteria, and then challenged with Salmonella enterica Typhimurium (ST). Results showed that LP postbiotics, particularly the metabolites, effectively prevented ST infection in mice, as evidenced by the inhibited weight loss, bacterial translocation, and tissue damages. The LP postbiotics markedly suppressed brain injuries and neuroinflammation (the decreased interleukin (IL)-1β and IL-6, and the increased IL-4 and IL-10). Behavior tests indicated that LP postbiotics, especially the metabolites, protected mice from ST-induced anxiety and depressive-like behaviors and cognitive impairment. A significant modulation of neuroactive molecules (5-hydroxytryptamine, gamma-aminobutyric acid, brain-derived neurotrophic factor, dopamine, acetylcholine, and neuropeptide Y) was also found by LP postbiotic pretreatment. Microbiome analysis revealed that LP postbiotics optimized the cecal microbial composition by increasing Helicobacter, Lactobacillus and Dubosiella, and decreasing Mucispirillum, norank_f_Oscillospiraceae, and Eubacterium_siraeum_group. Moreover, LP postbiotics inhibited the reduction of short-chain fatty acids caused by ST infection. Pearson's correlation assays further confirmed the strong relationship of LP postbiotics-mediated benefits and gut microbiota. This study highlights the effectiveness of postbiotics and provide a promising strategy for preventing infection-induced brain disorders by targeting gut–brain axis.
Collapse
Affiliation(s)
- Yanping Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Yan Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Aixin Hu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Xin Shu
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Wenxia Huang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co., Ltd., Huzhou, China
| | - Baikui Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| | - Min Yue
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Caimei Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou, China
| |
Collapse
|