1
|
Lu J, Ma H, Wang Q, Song Z, Wang J. Chemotherapy-mediated lncRNA-induced immune cell plasticity in cancer immunopathogenesis. Int Immunopharmacol 2024; 141:112967. [PMID: 39181018 DOI: 10.1016/j.intimp.2024.112967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Tumor cells engage with the immune system in a complex manner, utilizing evasion and adaptability mechanisms. The development of cancer and resistance to treatment relies on the ability of immune cells to adjust their phenotype and function in response to cues from the tumor microenvironment, known as immunological cell plasticity. This study delves into the role of long non-coding RNAs (lncRNAs) in enhancing immune cell flexibility in cancer, focusing on their regulatory actions in the tumor microenvironment and potential therapeutic implications. Through a comprehensive review of existing literature, the study analyzes the impact of lncRNAs on macrophages, T-cells, and MDSCs, as well as the influence of cytokines and growth factors like TNF, IL-6, HGF, and TGFβ on immunological cell plasticity and tumor immunoediting. LncRNAs exert a strong influence on immune cell plasticity through mechanisms such as transcriptional regulation, post-transcriptional modifications, and chromatin remodeling. These RNA molecules intricately modulate gene expression networks, acting as scaffolding, decoys, guides, and sponges. Moreover, both direct cell-cell interactions and soluble chemicals in the tumor microenvironment contribute to enhancing immune cell activation and survival. Understanding the influence of lncRNAs on immune cell flexibility sheds light on the biological pathways of immune evasion and cancer progression. Targeting long non-coding RNAs holds promise for amplifying anti-tumor immunity and overcoming drug resistance in cancer treatment. However, further research is necessary to determine the therapeutic potential of manipulating lncRNAs in the tumor microenvironment.
Collapse
Affiliation(s)
- Jingyuan Lu
- Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China.
| | - Haowei Ma
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Qian Wang
- Division of Hematology and Solid Tumor Oncology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Zhiheng Song
- Plasma Applied Physics Lab, C&J Nyheim Plasma Institute, Drexel University, 200 Federal St, Suite 500, Camden, NJ 08103.
| | - Jinli Wang
- School of Medicine, Department of Epidemiology and Biochemistry and Molecular & Cellular Biology, Georgetown University, 3700 O ST NW, Washington, DC 20057.
| |
Collapse
|
2
|
He H, Dong K, Chen M, Wang Y, Li Y, Wang D, Jia M, Meng X, Sun W, Fu S, Yu J. TOB1 inhibits the gastric cancer progression by focal adhesion pathway and ERK pathway based on transcriptional and metabolic sequencing. BMC Cancer 2024; 24:1130. [PMID: 39261761 PMCID: PMC11389266 DOI: 10.1186/s12885-024-12894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Gastric cancer is one of the most malignant digestive tract tumors worldwide and its progression is associated with gene expression and metabolic alteration. We revealed that the gastric cancer patients with lower expression level of TOB1 exhibited poorer overall survivals according to the data in Kaplan-Meier Plotter. The unphosphorylated TOB1 protein which is effective expressed lower in gastric cancer cells. The gastric cancer cells with TOB1 gene depletion performed higher abilities of proliferation, migration and invasion and lower ability of apoptosis in vitro. The TOB1 gene depletion also promoted the tumorigenesis of gastric cancer cells in vivo. The gastric cancer cells with TOB1 gene overexpression had the converse behaviors. The transcriptional and metabolic sequencing was performed. The analyzation results showed that genes correlate-expressed with TOB1 gene were enriched in the pathways related to ERK pathway, including focal adhesion pathway, which was verified using real-time quantitative PCR. After inhibiting ERK pathway, the proliferation, colony formation and migration abilities were reduced in gastric cancer cells with low phosphorylated TOB1 protein expression level. Moreover, Pearson correlation analysis was adopted to further analyze the correlation of enriched metabolic products and differentially expressed genes. The expression of Choline, UDP-N-acetylglucosamine, Adenosine and GMP were related to the function of TOB1. This study demonstrates the genes and metabolites related to focal adhesion pathway and ERK pathway are the potential diagnosis and therapeutic targets to gastric cancer with TOB1 depletion.
Collapse
Affiliation(s)
- Hongjie He
- Scientific Research Centre, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Kexian Dong
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Mingming Chen
- Scientific Research Centre, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yuanyuan Wang
- Scientific Research Centre, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yawen Li
- Scientific Research Centre, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Dong Wang
- Scientific Research Centre, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Mansha Jia
- Scientific Research Centre, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Xiangning Meng
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Wenjing Sun
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Songbin Fu
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, 150081, China
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Jingcui Yu
- Scientific Research Centre, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Ministry of Education, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
3
|
Zhang S, Gu J, Shi LL, Qian B, Diao X, Jiang X, Wu J, Wu Z, Shen A. A pan-cancer analysis of anti-proliferative protein family genes for therapeutic targets in cancer. Sci Rep 2023; 13:21607. [PMID: 38062199 PMCID: PMC10703880 DOI: 10.1038/s41598-023-48961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
The recently discovered APRO (anti-proliferative protein) family encodes a group of trans-membrane glycoproteins and includes 6 members: TOB1, TOB2, BTG1, BTG2, BTG3 and BTG4. The APRO family is reportedly associated with the initiation and progression of cancers. This study aims to undertake a comprehensive investigation of the APRO family of proteins as a prognostic biomarker in various human tumors. We performed a pan-cancer analysis of the APRO family based on The Cancer Genome Atlas (TCGA). With the bioinformatics methods, we explored the prognostic value of the APRO family and the correlation between APRO family expression and tumor mutation burden (TMB), microsatellite instability (MSI), drug sensitivity, and immunotherapy in numerous cancers. Our results show that the APRO family was primarily down-regulated in cancer samples. The expression of APRO family members was linked with patient prognosis. In addition, APRO family genes showed significant association with immune infiltrate subtypes, tumor microenvironment, and tumor cell stemness. Finally, our study also demonstrated the relationship between APRO family genes and drug sensitivity. This study provides comprehensive information to understand the APRO family's role as an oncogene and predictor of survival in some tumor types.
Collapse
Affiliation(s)
- Siming Zhang
- Cancer Research Center Nantong, Nantong Tumor Hospital and Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jue Gu
- Affiliated Hospital of Nantong University, Nantong, China
| | - Ling-Ling Shi
- Affiliated Nantong Hospital Third of Nantong University, Nantong, China
| | - Bo Qian
- Maternal and Child Care Hospital of Qidong, Nantong, China
| | - Xun Diao
- Cancer Research Center Nantong, Nantong Tumor Hospital and Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaohui Jiang
- Department of General Surgery, Nantong Tumor Hospital and Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Jindong Wu
- Department of General Surgery, Nantong Tumor Hospital and Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Zhijun Wu
- Department of Oncology, Nantong Traditional Chinese Medicine Hospital, Nantong, China.
| | - Aiguo Shen
- Cancer Research Center Nantong, Nantong Tumor Hospital and Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|