1
|
Brennan J, Lu ML, Kang Y. A New Model of Esophageal Cancers by Using a Detergent-Free Decellularized Matrix in a Perfusion Bioreactor. Bioengineering (Basel) 2023; 10:96. [PMID: 36671668 PMCID: PMC9854977 DOI: 10.3390/bioengineering10010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The lack of physiologically relevant human esophageal cancer models has as a result that many esophageal cancer studies are encountering major bottleneck challenges in achieving breakthrough progress. To address the issue, here we engineered a 3D esophageal tumor tissue model using a biomimetic decellularized esophageal matrix in a customized bioreactor. To obtain a biomimetic esophageal matrix, we developed a detergent-free, rapid decellularization method to decellularize porcine esophagus. We characterized the decellularized esophageal matrix (DEM) and utilized the DEM for the growth of esophageal cancer cell KYSE30 in well plates and the bioreactor. We then analyzed the expression of cancer-related markers of KYSE30 cells and compared them with formalin-fixed, paraffin-embedded (FFPE) esophageal squamous cell carcinoma (ESCC) tissue biospecimens. Our results show that the detergent-free decellularization method preserved the esophageal matrix components and effectively removed cell nucleus. KYSE30 cancer cells proliferated well on and inside the DEM. KYSE30 cells cultured on the DEM in the dynamic bioreactor show different cancer marker expressions than those in the static well plate, and also share some similarities to the FFPE-ESCC biospecimens. These findings built a foundation with potential for further study of esophageal cancer behavior in a biomimetic microenvironment using this new esophageal cancer model.
Collapse
Affiliation(s)
- Jordan Brennan
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Michael L. Lu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Faculty of Integrative Biology PhD Program, Department of Biological Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yunqing Kang
- Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
- Faculty of Integrative Biology PhD Program, Department of Biological Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
2
|
Nováková G, Drabina P, Brůčková L, Báčová J, Handl J, Svoboda J, Vrbický M, Roušar T, Sedlák M. Enantioselective Synthesis of Clavaminol A, Xestoaminol C and their Stereoisomers Exhibiting Cytotoxic Activity. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Gabriela Nováková
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| | - Pavel Drabina
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| | - Lenka Brůčková
- Department of Biological and Biochemical Sciences Faculty of Chemical Technology University of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| | - Jana Báčová
- Department of Biological and Biochemical Sciences Faculty of Chemical Technology University of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| | - Jiří Handl
- Department of Biological and Biochemical Sciences Faculty of Chemical Technology University of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| | - Jan Svoboda
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| | - Martin Vrbický
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| | - Tomáš Roušar
- Department of Biological and Biochemical Sciences Faculty of Chemical Technology University of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| | - Miloš Sedlák
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| |
Collapse
|
3
|
Models for Monocytic Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32036607 DOI: 10.1007/978-3-030-35723-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Monocytes (Mos) are immune cells that critically regulate cancer, enabling tumor growth and modulating metastasis. Mos can give rise to tumor-associated macrophages (TAMs) and Mo-derived dendritic cells (moDCs), all of which shape the tumor microenvironment (TME). Thus, understanding their roles in the TME is key for improved immunotherapy. Concurrently, various biological and mechanical factors including changes in local cytokines, extracellular matrix production, and metabolic changes in the TME affect the roles of monocytic cells. As such, relevant TME models are critical to achieve meaningful insight on the precise functions, mechanisms, and effects of monocytic cells. Notably, murine models have yielded significant insight into human Mo biology. However, many of these results have yet to be confirmed in humans, reinforcing the need for improved in vitro human TME models for the development of cancer interventions. Thus, this chapter (1) summarizes current insight on the tumor biology of Mos, TAMs, and moDCs, (2) highlights key therapeutic applications relevant to these cells, and (3) discusses various TME models to study their TME-related activity. We conclude with a perspective on the future research trajectory of this topic.
Collapse
|
4
|
A Review of Self-Expanding Esophageal Stents for the Palliation Therapy of Inoperable Esophageal Malignancies. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9265017. [PMID: 31080835 PMCID: PMC6475558 DOI: 10.1155/2019/9265017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/09/2019] [Accepted: 03/17/2019] [Indexed: 02/07/2023]
Abstract
Esophageal cancer is a very deadly disease, killing more than 15,000 people in the United States annually. Almost 400,000 new cases happen in the worldwide every year. More than 50% esophageal cancer patients are diagnosed at an advanced stage when they need an esophageal stent to open the blocked esophagus for feeding and drinking. Esophageal stents have evolved in stages over the years. Current clinically used stents commonly include stainless steel or nitinol self-expandable metallic stent (SEMS) and self-expandable plastic stent (SEPS). There are many choices of different types of stents and sizes, with fierce competition among manufacturers. However, current stent technology, whether uncovered, partially covered, fully covered SEMS or SEPS, has their own advantages to solve the dysphagia, stricture, and fistula problems, but they also cause some clinical complications. The ideal stent remains elusive. New 3D printing technique may bring new promising potential to manufacturing personalized esophageal stents. Drug-eluting stents could be the new avenue to do more than just pry open a stricture or cover a defect in the esophageal lumen, a possibility of proving local anticancer therapy simultaneously. Additionally, the lack of esophageal cancer animal models also hinders the progress of stent development. This paper reviews these topics for a comprehensive understanding of this field. In a conclusion, the ultimate goal of the future esophageal stent would have multifunction to treat the underlying conditions and restore esophageal function to near normal.
Collapse
|
5
|
Spheroid growth in ovarian cancer alters transcriptome responses for stress pathways and epigenetic responses. PLoS One 2017; 12:e0182930. [PMID: 28793334 PMCID: PMC5549971 DOI: 10.1371/journal.pone.0182930] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological cancer, with over 200,000 women diagnosed each year and over half of those cases leading to death. These poor statistics are related to a lack of early symptoms and inadequate screening techniques. This results in the cancer going undetected until later stages when the tumor has metastasized through a process that requires the epithelial to mesenchymal transition (EMT). In lieu of traditional monolayer cell culture, EMT and cancer progression in general is best characterized through the use of 3D spheroid models. In this study, we examine gene expression changes through microarray analysis in spheroid versus monolayer ovarian cancer cells treated with TGFβ to induce EMT. Transcripts that included Coiled-Coil Domain Containing 80 (CCDC80), Solute Carrier Family 6 (Neutral Amino Acid Transporter), Member 15 (SLC6A15), Semaphorin 3E (SEMA3E) and PIF1 5'-To-3' DNA Helicase (PIF1) were downregulated more than 10-fold in the 3D cells while Inhibitor Of DNA Binding 2, HLH Protein (ID2), Regulator Of Cell Cycle (RGCC), Protease, Serine 35 (PRSS35), and Aldo-Keto Reductase Family 1, Member C1 (AKR1C1) were increased more than 50-fold. Interestingly, EMT factors, stress responses and epigenetic processes were significantly affected by 3D growth. The heat shock response and the oxidative stress response were also identified as transcriptome responses that showed significant changes upon 3D growth. Subnetwork enrichment analysis revealed that DNA integrity (e.g. DNA damage, genetic instability, nucleotide excision repair, and the DNA damage checkpoint pathway) were altered in the 3D spheroid model. In addition, two epigenetic processes, DNA methylation and histone acetylation, were increased with 3D growth. These findings support the hypothesis that three dimensional ovarian cell culturing is physiologically different from its monolayer counterpart.
Collapse
|
6
|
Silveira-Dorta G, Sousa IJ, Fernandes MX, Martín VS, Padrón JM. Synthesis and identification of unprecedented selective inhibitors of CK1ε. Eur J Med Chem 2015; 96:308-17. [PMID: 25899335 DOI: 10.1016/j.ejmech.2015.03.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/26/2022]
Abstract
A small and structure-biased library of enantiopure anti-β-amino alcohols was prepared in a straightforward manner by a simplified version of the Reetz protocol. Antiproliferative activity testing against a panel of five human solid tumor cell lines gave GI50 values in the range 1-20 μM. The reverse screening by computational methods against 58 proteins involved in cancer pointed to kinases as possible therapeutic target candidates. The experimental determination of the interaction with 456 kinases indicated that the compounds behave as selective CK1ε inhibitors. Our results demonstrate that the lead compound represents the first selective CK1ε inhibitor with proven antiproliferative activity in cancer cell lines.
Collapse
Affiliation(s)
- Gastón Silveira-Dorta
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Inês J Sousa
- Centro de Química da Madeira, Centro de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Miguel X Fernandes
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain; Centro de Química da Madeira, Centro de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Victor S Martín
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - José M Padrón
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain.
| |
Collapse
|
7
|
García ME, Nicotra VE, Oberti JC, Ríos-Luci C, León LG, Marler L, Li G, Pezzuto JM, van Breemen RB, Padrón JM, Hueso-Falcón I, Estévez-Braun A. Antiproliferative and quinone reductase-inducing activities of withanolides derivatives. Eur J Med Chem 2014; 82:68-81. [DOI: 10.1016/j.ejmech.2014.05.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 05/15/2014] [Accepted: 05/20/2014] [Indexed: 02/01/2023]
|
8
|
Silveira-Dorta G, Donadel OJ, Martín VS, Padrón JM. Direct stereoselective synthesis of enantiomerically pure anti-β-amino alcohols. J Org Chem 2014; 79:6775-82. [PMID: 24708186 DOI: 10.1021/jo500481j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enantiomerically pure anti-β-amino alcohols were synthesized from optically pure α-(N,N-dibenzylamino)benzyl esters, derived from α-amino acids, by the sequential reduction to aldehyde with DIBAL-H at -78 °C and subsequent in situ addition of Grignard reagents. Besides anti-β-amino alcohols, anti-2-amino-1,3-diols and anti-3-amino-1,4-diols were obtained in good yields (60-95%) and excellent stereoselectivity (de > 95%). Our technique is compatible with free hydroxyl groups present in the substrate. To demonstrate the versatility of the method, spisulosine and sphinganine were synthesized in two steps from the appropriate N,N-dibenzyl-l-aminobenzyl ester in 42% and 45% yield, respectively.
Collapse
Affiliation(s)
- Gastón Silveira-Dorta
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna , C/Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | | | | | | |
Collapse
|
9
|
Messori L, Cubo L, Gabbiani C, Álvarez-Valdés A, Michelucci E, Pieraccini G, Ríos-Luci C, León LG, Padrón JM, Navarro-Ranninger C, Casini A, Quiroga AG. Reactivity and Biological Properties of a Series of Cytotoxic PtI2(amine)2 Complexes, Either cis or trans Configured. Inorg Chem 2012; 51:1717-26. [DOI: 10.1021/ic202036c] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luigi Messori
- Dipartimento di Chimica, Università
di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Leticia Cubo
- Department of Inorganic Chemistry,
Universidad Autónoma de Madrid, C/Francisco Tomás y
Valiente, 7, 28049 Madrid, Spain
| | - Chiara Gabbiani
- Dipartimento di Chimica, Università
di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Amparo Álvarez-Valdés
- Department of Inorganic Chemistry,
Universidad Autónoma de Madrid, C/Francisco Tomás y
Valiente, 7, 28049 Madrid, Spain
| | - Elena Michelucci
- Mass Spectrometry Centre (CISM),
Università di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino,
Italy
| | - Giuseppe Pieraccini
- Mass Spectrometry Centre (CISM),
Università di Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino,
Italy
| | - Carla Ríos-Luci
- Instituto Universitario
de Bio-Orgánica
“Antonio González” (IUBO-AG), Universidad de
La Laguna, C/Astrofísico Francisco Sánchez 2, 38206
La Laguna, Spain
| | - Leticia G. León
- Instituto Universitario
de Bio-Orgánica
“Antonio González” (IUBO-AG), Universidad de
La Laguna, C/Astrofísico Francisco Sánchez 2, 38206
La Laguna, Spain
| | - José M. Padrón
- Instituto Universitario
de Bio-Orgánica
“Antonio González” (IUBO-AG), Universidad de
La Laguna, C/Astrofísico Francisco Sánchez 2, 38206
La Laguna, Spain
| | - Carmen Navarro-Ranninger
- Department of Inorganic Chemistry,
Universidad Autónoma de Madrid, C/Francisco Tomás y
Valiente, 7, 28049 Madrid, Spain
| | - Angela Casini
- Institut
des Sciences et Ingénierie
Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL),
CH-1015 Lausanne, Switzerland
- Research Institute of Pharmacy, University
of Groningen, 9713 AV Groningen, The Netherlands
| | - Adoración G. Quiroga
- Department of Inorganic Chemistry,
Universidad Autónoma de Madrid, C/Francisco Tomás y
Valiente, 7, 28049 Madrid, Spain
| |
Collapse
|
10
|
Kimlin LC, Casagrande G, Virador VM. In vitro three-dimensional (3D) models in cancer research: an update. Mol Carcinog 2011; 52:167-82. [PMID: 22162252 DOI: 10.1002/mc.21844] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/21/2011] [Accepted: 10/27/2011] [Indexed: 12/21/2022]
Abstract
Tissues are three-dimensional (3D) entities as is the tumor that arises within them. Though disaggregated cancerous tissues have produced numerous cell lines for basic and applied research, it is generally agreed that these lines are poor models of in vivo phenomena. In this review we focus on in vitro 3D models used in cancer research, particularly their contribution to molecular studies of the early stages of metastasis, angiogenesis, the tumor microenvironment, and cancer stem cells. We present a summary of the various formats used in the field of tissue bioengineering as they apply to mechanistic modeling of cancer stages or processes. In addition we list studies that model specific types of malignancies, highlight drastic differences in results between 3D in vitro models and classical monolayer culturing techniques, and establish the need for standardization of 3D models for meaningful preclinical and therapeutic testing.
Collapse
Affiliation(s)
- Lauren C Kimlin
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
11
|
A modular approach to trim cellular targets in anticancer drug discovery. Bioorg Med Chem Lett 2011; 21:6641-5. [DOI: 10.1016/j.bmcl.2011.09.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/18/2011] [Accepted: 09/19/2011] [Indexed: 11/20/2022]
|
12
|
Nieto D, González-Vadillo AM, Bruña S, Pastor CJ, Ríos-Luci C, León LG, Padrón JM, Navarro-Ranninger C, Cuadrado I. Heterometallic platinum(II) compounds with β-aminoethylferrocenes: synthesis, electrochemical behaviour and anticancer activity. Dalton Trans 2011; 41:432-41. [PMID: 22025199 DOI: 10.1039/c1dt11358e] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new family of heterometallic compounds 3-6 containing ferrocenyl and platinum(II) centers has been synthesized by reaction of 1-β-aminoethylferrocene (1) and 1,1'-bis(β-aminoethyl)ferrocene (2) with Pt(II) precursors. Using K(2)[PtCl(4)] as the Pt(II) source, the cis-square-planar neutral compounds [Fe{η(5)-C(5)H(4)(CH(2))(2)NH(2)}(2)PtCl(2)] (3) and [{Fe(η(5)-C(5)H(4)(CH(2))(2)NH(2))(η(5)-C(5)H(5))}(2)PtCl(2)] (5) were obtained. Reaction of cis-[PtCl(2)(dmso)(2)] with 1 and 2 resulted in the displacement of dmso and chloride ligands from the platinum coordination sphere, affording the cationic and neutral compounds [Fe{η(5)-C(5)H(4)(CH(2))(2)NH(2)}(2)Pt(dmso)Cl]Cl (4) and [Fe(η(5)-C(5)H(4)(CH(2))(2)NH(2))(η(5)-C(5)H(5))Pt(dmso)Cl(2)] (6). Compounds 3-6 were thoroughly characterized using multinuclear ((1)H, (13)C, (195)Pt) NMR, IR spectroscopy, ESI mass spectrometry and elemental analysis. Single-crystal X-ray analysis of heterometallic 6 confirmed the cis geometry of the molecule and revealed that the platinum atom is held in a perfect square-planar geometry. The electrochemical behaviour of the heterometallic compounds 3-6, which has been examined by cyclic (CV) and square wave (SWV) voltammetries in dichloromethane and dmso solution, is characterized by the reversible one-electron oxidation of the ferrocene moieties. The results of the biological activity studies revealed that the organometallic complex 5 is active against all cell lines with GI(50) values in the range 1.7-2.3 μM. When compared to the standard anticancer drug cisplatin, heterotrimetallic 5, possessing two aminoethylferrocenyl units coordinated to the Pt(II) center, showed a greater activity profile in the colon cancer cell line. Cell cycle studies revealed that the new mixed compound exhibits a mechanism of action different to cisplatin.
Collapse
Affiliation(s)
- Daniel Nieto
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 29049, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Antiproliferative activity of dmoPTA–Ru(II) complexes against human solid tumor cells. Bioorg Med Chem Lett 2011; 21:4568-71. [DOI: 10.1016/j.bmcl.2011.05.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 05/27/2011] [Accepted: 05/28/2011] [Indexed: 11/24/2022]
|
14
|
Symolon H, Bushnev A, Peng Q, Ramaraju H, Mays SG, Allegood JC, Pruett ST, Sullards MC, Dillehay DL, Liotta DC, Merrill AH. Enigmol: a novel sphingolipid analogue with anticancer activity against cancer cell lines and in vivo models for intestinal and prostate cancer. Mol Cancer Ther 2011; 10:648-57. [PMID: 21398423 DOI: 10.1158/1535-7163.mct-10-0754] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sphingoid bases are cytotoxic for many cancer cell lines and are thought to contribute to suppression of intestinal tumorigenesis in vivo by ingested sphingolipids. This study explored the behavior of a sphingoid base analogue, (2S,3S,5S)-2-amino-3,5-dihydroxyoctadecane (Enigmol), that cannot be phosphorylated by sphingosine kinases and is slowly N-acylated and therefore is more persistent than natural sphingoid bases. Enigmol had potential anticancer activity in a National Cancer Institute (NCI-60) cell line screen and was confirmed to be more cytotoxic and persistent than naturally occurring sphingoid bases using HT29 cells, a colon cancer cell line. Although the molecular targets of sphingoid bases are not well delineated, Enigmol shared one of the mechanisms that has been found for naturally occurring sphingoid bases: normalization of the aberrant accumulation of β-catenin in the nucleus and cytoplasm of colon cancer cells due to defect(s) in the adenomatous polyposis coli (APC)/β-catenin regulatory system. Enigmol also had antitumor efficacy when administered orally to Min mice, a mouse model with a truncated APC gene product (C57Bl/6J(Min/+) mice), decreasing the number of intestinal tumors by half at 0.025% of the diet (w/w), with no evidence of host toxicity until higher dosages. Enigmol was also tested against the prostate cancer cell lines DU145 and PC-3 in nude mouse xenografts and suppressed tumor growth in both. Thus, Enigmol represents a novel category of sphingoid base analogue that is orally bioavailable and has the potential to be effective against multiple types of cancer.
Collapse
Affiliation(s)
- Holly Symolon
- School of Biology, 310 Ferst Drive, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pudziuvelyte E, Ríos-Luci C, León LG, Cikotiene I, Padrón JM. Synthesis and antiproliferative activity of 2,4-disubstituted 6-aryl-7H-pyrrolo[3,2-d]pyrimidin-7-one 5-oxides. Bioorg Med Chem 2009; 17:4955-60. [DOI: 10.1016/j.bmc.2009.05.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 05/25/2009] [Accepted: 05/31/2009] [Indexed: 11/25/2022]
|
16
|
León LG, Carballo RM, Vega-Hernández MC, Miranda PO, Martín VS, Padrón JI, Padrón JM. beta'-Hydroxy-alpha,beta-unsaturated ketones: A new pharmacophore for the design of anticancer drugs. Part 2. ChemMedChem 2009; 3:1740-7. [PMID: 18846591 DOI: 10.1002/cmdc.200800212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Novel antiproliferative beta'-acyloxy-alpha,beta-unsaturated ketones were obtained by means of an iron(III)-catalyzed multicomponent domino process (ABB' 3CR). The most active derivatives displayed GI(50) values in the range of 0.5-3.9 muM against a panel of representative human solid tumor cell lines: A2780, SW1573, HBL-100, T-47D and WiDr. Analysis of cells following 24 h exposure to these drugs showed cell cycle arrest in the S and G(2)/M phase, in a dose-dependent manner. Our data indicate that the beta'-acyloxy-alpha,beta-unsaturated ketones cause permanent damage to the cells and induce apoptosis.
Collapse
Affiliation(s)
- Leticia G León
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de la Laguna, C/ Astrofísico Francisco Sánchez, 2, 38206 La Laguna, Spain
| | | | | | | | | | | | | |
Collapse
|