1
|
Lima RG, Flores RS, Miessi G, Pulcherio JHV, Aguilera LF, Araujo LO, Oliveira SL, Caires ARL. Determination of Photosensitizing Potential of Lapachol for Photodynamic Inactivation of Bacteria. Molecules 2024; 29:5184. [PMID: 39519826 PMCID: PMC11547567 DOI: 10.3390/molecules29215184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Antimicrobial photodynamic inactivation (aPDI) offers a promising alternative to combat drug-resistant bacteria. This study explores the potential of lapachol, a natural naphthoquinone derived from Tabebuia avellanedae, as a photosensitizer (PS) for aPDI. Lapachol's photosensitizing properties were evaluated using Staphylococcus aureus and Escherichia coli strains under blue LED light (450 nm). UV-vis spectroscopy confirmed lapachol's absorption peak at 482 nm, aligning with effective excitation wavelengths for phototherapy. Photoinactivation assays demonstrated significant bacterial growth inhibition, achieving complete eradication of S. aureus at 25 µg·mL-1 under light exposure. Scanning electron microscopy (SEM) revealed morphological damage in irradiated bacterial cells, confirming lapachol's bactericidal effect. This research underscores lapachol's potential as a novel photosensitizer in antimicrobial photodynamic therapy, addressing a critical need in combating antibiotic resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anderson R. L. Caires
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul, P.O. Box 549, 79070-900 Campo Grande, MS, Brazil; (R.G.L.); (R.S.F.); (G.M.); (J.H.V.P.); (L.F.A.); (L.O.A.); (S.L.O.)
| |
Collapse
|
2
|
de Andrade JKF, da Silva Góes AJ, Barbosa VX, de Lima Silva MS, Matos Donato MA, Peixoto CA, Militão GCG, da Silva TG. Anticancer activity of β-Lapachone derivatives on human leukemic cell lines. Chem Biol Interact 2022; 365:110057. [PMID: 35934135 DOI: 10.1016/j.cbi.2022.110057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/18/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022]
Abstract
β-lapachone is a 1,2-naphthoquinone of great therapeutic interest that induces cell death by autophagy and apoptosis in tumor cells due to oxidative stress increasing. However, its high toxicity in healthy tissues limits its clinical use, which stimulates the planning and synthesis of more selective analogs. The aim of this study was to investigate the cytotoxic activity of three thiosemicarbazones derived from β-lapachone (BV2, BV3 and BV5) in leukemia cells. Cytotoxicity tests were performed on tumor cells (HL-60, K562, K562-Lucena and MOLT-4) and normal peripheral blood mononuclear cells (PBMCs). Subsequently, the mode of action of compounds was accessed by optical microscopy, transmission electron microscopy or fluorescence microscopy. Flow cytometry analysis was performed to investigate apoptosis induction, cell cycle, DNA fragmentation and mitochondrial depolarization. All derivatives inhibited tumor cell growth after 72 h (IC50 < 10 μM to all cell lines, including the resistant K562-Lucena) with less toxic effects in PBMC cells, being BV3 the most selective compound with selective index (SI) of 275 for HL-60; SI of 40 to K562; SI of 10 for MOLT-4 and SI of 50 to K562-Lucena compared to β-lapachone with SI of 18 to HL-60, SI of 3.7 to K562; SI of 2.4 to MOLT-4 and SI of 0.9 to K562-Lucena. In addition, the K562 or MOLT-4 cells treated with BV3 showed characteristics of both apoptosis and autophagy cell death, mainly by autophagy. These results demonstrate the potent cytotoxic effect of thiosemicarbazones derived from β-lapachone as promising anticancer drugs candidates, encouraging the continuity of in vivo tests.
Collapse
Affiliation(s)
| | | | - Vanessa Xavier Barbosa
- Department of Antibiotics, Federal University of Pernambuco (UFPE), Recife, Pernambuco, 50670-901, Brazil
| | | | - Mariana Aragão Matos Donato
- Ultrastructure Laboratory, Aggeu Magalhães Research Center of the Oswaldo Cruz Foundation, Recife, Pernambuco, 50670-901, Brazil.
| | - Christina Alves Peixoto
- Ultrastructure Laboratory, Aggeu Magalhães Research Center of the Oswaldo Cruz Foundation, Recife, Pernambuco, 50670-901, Brazil.
| | | | | |
Collapse
|
3
|
Oliveira T, Lemos D, Jean L, Kawashima JM, de Azevedo VR, Salustiano EJ, Rumjanek VM, Monteiro RQ. Detachment of Hexokinase II From Mitochondria Promotes Collateral Sensitivity in Multidrug Resistant Chronic Myeloid Leukemia Cells. Front Oncol 2022; 12:852985. [PMID: 35719932 PMCID: PMC9204307 DOI: 10.3389/fonc.2022.852985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic Myeloid Leukemia is a neoplastic disease characterized by the abnormal expansion of hematopoietic cells with compromised functions. Leukemic cells often display a multidrug resistance phenotype, enabling them to evade a number of structurally unrelated cytotoxic compounds. One of those mechanisms relies on the high expression of efflux transporters, such as the ABC proteins, whose activity depends on the hydrolysis of ATP to reduce intracellular drug accumulation. In the present work, we employed a well-known erythroleukemia cell line, K562, and a multidrug resistant derivative cell, FEPS, to evaluate how hexokinase II, a key regulator for the rate-limiting step glycolysis, contributes to the establishment of the multidrug resistance phenotype. We found that multidrug resistant cells primarily resort to glycolysis to generate ATP. Clotrimazole reduced the expression of mitochondrial hexokinase II, which destabilized bioenergetic parameters such as reactive oxygen species production, ATP, and glutathione levels on multidrug resistant cells. This impaired the activity of ABCC1, leading to increased drug accumulation and cell death. In summary, we propose that decoupling of hexokinase II from the mitochondria emerges as a promising strategy to generate collateral sensitivity and aid in the management of chronic myeloid leukemia in chemotherapy-refractory patients.
Collapse
Affiliation(s)
- Thaís Oliveira
- Laboratório de Trombose e Câncer, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas Lemos
- Laboratório de Trombose e Câncer, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Louise Jean
- Laboratório de Trombose e Câncer, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jéssica M Kawashima
- Laboratório de Trombose e Câncer, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vitória R de Azevedo
- Laboratório de Trombose e Câncer, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo J Salustiano
- Laboratório de Imunologia Tumoral, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivian M Rumjanek
- Laboratório de Imunologia Tumoral, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Q Monteiro
- Laboratório de Trombose e Câncer, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Mahalapbutr P, Leechaisit R, Thongnum A, Todsaporn D, Prachayasittikul V, Rungrotmongkol T, Prachayasittikul S, Ruchirawat S, Prachayasittikul V, Pingaew R. Discovery of Anilino-1,4-naphthoquinones as Potent EGFR Tyrosine Kinase Inhibitors: Synthesis, Biological Evaluation, and Comprehensive Molecular Modeling. ACS OMEGA 2022; 7:17881-17893. [PMID: 35664590 PMCID: PMC9161259 DOI: 10.1021/acsomega.2c01188] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/21/2022] [Indexed: 05/02/2023]
Abstract
Epidermal growth factor receptor (EGFR) has been recognized as one of the attractive targets for anticancer drug development. Herein, a set of anilino-1,4-naphthoquinone derivatives (3-18) was synthesized and investigated for their anticancer and EGFR inhibitory potentials. Among all tested compounds, three derivatives (3, 8, and 10) were selected for studying EGFR inhibitory activity (in vitro and in silico) due to their most potent cytotoxic activities against six tested cancer cell lines (i.e., HuCCA-1, HepG2, A549, MOLT-3, MDA-MB-231, and T47D; IC50 values = 1.75-27.91 μM), high selectivity index (>20), and good predicted drug-like properties. The experimental results showed that these three promising compounds are potent EGFR inhibitors with nanomolar IC50 values (3.96-18.64 nM). Interestingly, the most potent compound 3 bearing 4-methyl substituent on the phenyl ring displayed 4-fold higher potency than the known EGFR inhibitor, erlotinib. Molecular docking, molecular dynamics simulation, and MM/GBSA-based free energy calculation revealed that van der Waals force played a major role in the accommodations of compound 3 within the ATP-binding pocket of EGFR. Additionally, the 4-CH3 moiety of the compound was noted to be a key chemical feature contributing to the highly potent EGFR inhibitory activity via its formations of alkyl interactions with A743, K745, M766, and L788 residues as well as additional interactions with M766 and T790.
Collapse
Affiliation(s)
- Panupong Mahalapbutr
- Department
of Biochemistry, and Center for Translational Medicine, Faculty of
Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ronnakorn Leechaisit
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| | - Anusit Thongnum
- Department
of Physics, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| | - Duangjai Todsaporn
- Structural
and Computational Biology Research Unit, Department of Biochemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Veda Prachayasittikul
- Center
of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Thanyada Rungrotmongkol
- Structural
and Computational Biology Research Unit, Department of Biochemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program
in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supaluk Prachayasittikul
- Center
of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Somsak Ruchirawat
- Laboratory
of Medicinal Chemistry and Program in Chemical Sciences, Chulabhorn Research Institute, Chulabhorn Graduate
Institute, Bangkok 10210, Thailand
- Commission
on Higher Education, Ministry of Education, Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok 10400, Thailand
| | - Virapong Prachayasittikul
- Department
of Clinical Microbiology and Applied Technology, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Ratchanok Pingaew
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| |
Collapse
|
5
|
Singh A, Basu A, Sharma A, Priya A, Kaur M, Kaur G, Banerjee B. Lawsone (2-hydroxy-1,4-naphthaquinone) derived anticancer agents. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
2-Hydroxy-1,4-naphthaquinone, commonly known as lawsone, represents an extremely important biologically active naturally occurring compound. It can easily be isolated from Lawsonia inermis (henna) tree leaf extract. Last decade has seen tremendous applications of lawsone as a starting component for the preparation of various organic scaffolds. Many of these synthesized scaffolds showed a wide range of biological activities including potential activities towards several cancer cell lines. This review deals with diverse synthetic methods of lawsone derived scaffolds and their screening against different anti-cancer cell lines along with promising results.
Collapse
Affiliation(s)
- Arvind Singh
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Amartya Basu
- Department of General Medicine , Kalinga Institute of Medical Sciences , Bhubaneswar , Odisha 751024 , India
| | - Aditi Sharma
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Anu Priya
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Manmmet Kaur
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Gurpreet Kaur
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| | - Bubun Banerjee
- Department of Chemistry , Akal University , Talwandi Sabo , Bathinda , Punjab 151302 , India
| |
Collapse
|
6
|
Ieque AL, Carvalho HCD, Baldin VP, Santos NCDS, Costacurta GF, Sampiron EG, Fernandez de Andrade CMM, Siqueira VLD, Caleffi Ferracioli KR, Cardoso RF, Cortez DAG, Silva EL, Scodro RBDL. Antituberculosis Activities of Lapachol and β-Lapachone in Combination with Other Drugs in Acidic pH. Microb Drug Resist 2020; 27:924-932. [PMID: 33275860 DOI: 10.1089/mdr.2020.0164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The treatment of multidrug-resistant tuberculosis (MDR-TB) is a challenge to be overcome. The increase of resistant isolates associated with serious side effects during therapy leads to the search for substances that have anti-TB activity, which make treatment less toxic, and also act in the macrophage acidic environment promoted by the infection. Objective: The aim of this study was to investigate lapachol and β-lapachone activities in combination with other drugs against Mycobacterium tuberculosis at neutral and acidic pH and its cytotoxicity. Design: Inhibitory and bactericidal activities against M. tuberculosis and clinical isolates were determined. Drug combination and cytotoxicity assay were carried out using standard TB drugs and/or N-acetylcysteine (NAC). Results: Both naphthoquinones presented activity against MDR clinical isolates. The combinations with the first-line TB drugs demonstrated an additive effect and β-lapachone+NAC were synergic against H37Rv. Lapachol activity at acidic pH and its association with NAC improved the selectivity index. Lapachol and β-lapachone produced cell morphological changes in bacilli at pH 6.0 and 6.8, respectively. Conclusion: Lapachol revealed promising anti-TB activity, especially associated with NAC.
Collapse
Affiliation(s)
- Andressa Lorena Ieque
- Postgraduate Program in Health Sciences, State University of Maringá, Maringá, Brazil
| | | | | | | | | | - Eloísa Gibin Sampiron
- Postgraduate Program in Health Sciences, State University of Maringá, Maringá, Brazil
| | | | - Vera Lúcia Dias Siqueira
- Postgraduate Program in Biosciences & Physiopatology, State University of Maringá, Maringá, Brazil
| | | | - Rosilene Fressatti Cardoso
- Postgraduate Program in Health Sciences, State University of Maringá, Maringá, Brazil.,Postgraduate Program in Biosciences & Physiopatology, State University of Maringá, Maringá, Brazil
| | | | | | | |
Collapse
|
7
|
Chen Q, Bai L, Zhou X, Xu P, Li X, Xu H, Zheng Y, Zhao Y, Lu S, Xue M. Development of long-circulating lapachol nanoparticles: formation, characterization, pharmacokinetics, distribution and cytotoxicity. RSC Adv 2020; 10:30025-30034. [PMID: 35518271 PMCID: PMC9056296 DOI: 10.1039/d0ra05752e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Lapachol is an active compound for the treatment of malignant brain glioma. However, its physicochemical properties limit its clinical application. The purpose of this study is to develop a nano-drug delivery system (LPC-LP) loaded with lapachol (LPC), which remarkably prolongs the half-life in the body, and increases the brain intake, therefore, achieving a better anticancer effect in the treatment of glioma. In order to optimize the formulation of liposomes, an orthogonal design was adopted with entrapment efficiency (EE) as the index. The characterization of the optimized formulation was evaluated in vitro. To assess the safety profile and effect of LPC-LP, a rapid and sensitive ultra-fast liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) method was developed for studying the pharmacokinetics and brain distribution of LPC-LP and LPC. Finally, the cytotoxicity of the two preparations on C6 cells was studied by the MTT assay. The results showed that the average particle size of LPC-LP was 85.92 ± 2.35 nm, the EE of liposomes was 92.52 ± 1.81%, and the charge potential was −40.70 ± 9.20 mV. An in vitro release study showed that the release of lapachol from LPC-LP was delayed compared to LPC, indicating that LPC-LP was a sustained and controlled release system. The UPLC-MS/MS method was fully validated in both plasma and brain tissue according to the Food and Drug Administration (FDA) recommended guidelines, and successfully used for quantification of lapachol in vivo. After intravenous administration, LPC-LP prolonged circulation time of lapachol in the body and increased brain intake. Besides, the MTT results revealed that the IC50 value of LPC-LP on C6 cells significantly decreased, compared with LPC, which further confirmed that LPC-LP enhanced the inhibition of C6 cells and improved the anti-glioma effect. In conclusion, LPC-LP could serve as a promising candidate for the clinical application of lapachol in the treatment of glioma. LPC-LP is a promising and potential nanoparticle in the treatment of glioma.![]()
Collapse
Affiliation(s)
- Qunying Chen
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University Beijing 100069 China
| | - Lu Bai
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University Beijing 100069 China
| | - Xuelin Zhou
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University Beijing 100069 China
| | - Pingxiang Xu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University Beijing 100069 China
| | - Xiaorong Li
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University Beijing 100069 China
| | - Huanli Xu
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University Beijing 100069 China
| | - Yuanyuan Zheng
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University Beijing 100069 China
| | - Yuming Zhao
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University Beijing 100069 China
| | - Shousi Lu
- China Rehabilitation Research Center Beijing China
| | - Ming Xue
- Department of Pharmacology, Beijing Laboratory for Biomedical Detection Technology and Instrument, School of Basic Medical Sciences, Capital Medical University Beijing 100069 China
| |
Collapse
|
8
|
Santos MFD, Santos LED, Costa DLD, Vieira TA, Lustosa DC. Trichoderma spp. on treatment of Handroanthus serratifolius seeds: effect on seedling germination and development. Heliyon 2020; 6:e04044. [PMID: 32518852 PMCID: PMC7270539 DOI: 10.1016/j.heliyon.2020.e04044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/03/2020] [Accepted: 05/19/2020] [Indexed: 12/05/2022] Open
Abstract
Fungi of the genus Trichoderma are important microorganisms used in biocontrol processes and the promotion of plant development. However, they remain poorly studied in the context of forestry programs, especially those related to native Amazonian species. Thus, it is the aim of this study to evaluate the effects of different Trichoderma isolates on the germination and development of Handroanthus serratifolius seedlings. During in vitro germination tests, seeds were immersed for 24 h in respective fungal suspensions each prepared using one of five Trichoderma isolates. The suspensions were held in plastic trays and kept at a temperature of 24 ± 2 °C. Metrics related to germination and development assessed under laboratory conditions include: germination speed index (GSI), germination percentage, length of the roots, and hypocotyls, as well as fungal perseverance. In the nursery, Trichoderma were used in two different applications: pre-planting treatment and as a monthly, post-planting treatment. Pre-planting treatments consisted of 10 g of colonized rice grains bearing each isolate being placed into experimental bags five days before seeding. The post-planting treatment involved the application of 10 mL of fungal suspension per experimental bag. Each month, the height, stem diameter, and leaf number were measured for each seedling. At the end of the experiment, the length and mass of roots as well as the total dry mass were recorded. In laboratory conditions, seeds treated with Trichoderma asperellum -TAM03 obtained the greatest fractional germination (76.5%) and GSI. In the nursery experiments, isolates TAM01 and TAM03, when applied as a post-planting treatment, increased the height, stem diameter, and number of leaves of treated plants with respect to the control group by 180 days post-treatment. After 365 days, plants which received TAM01 pre-planting treatments were observed to have increased root and aerial part length, as well as root mass and overall dry mass. These results suggest that T. asperellum -TAM01 positively affects H. serratifolius development.
Collapse
Affiliation(s)
- Misael Freitas Dos Santos
- Postgraduate Program in Forest Engineer of Federal University of Paraná, Av. Lothário Meissner, 632, CEP 80210-170, Curitiba, Paraná, Brazil
| | - Lizandra Elizeário Dos Santos
- Postgraduate Program in Society, Nature and Development (PPGSND/Ufopa), Federal University of Western Pará, Vera Paz Street, CEP: 68035-110, Santarém, Pará, Brazil
| | - Daniele Lima da Costa
- Postgraduate Program in Forest Engineer of Federal University of Paraná, Av. Lothário Meissner, 632, CEP 80210-170, Curitiba, Paraná, Brazil
| | - Thiago Almeida Vieira
- Federal University of Western of Pará, Vera Paz Street, CEP: 68035-110, Santarém, Pará, Brazil.,Postdoctoral by University of Algarve, Faro, Portugal
| | - Denise Castro Lustosa
- Federal University of Western of Pará, Vera Paz Street, CEP: 68035-110, Santarém, Pará, Brazil
| |
Collapse
|
9
|
Salustiano EJ, da Costa KM, Freire-de-Lima L, Mendonça-Previato L, Previato JO. Inhibition of glycosphingolipid biosynthesis reverts multidrug resistance by differentially modulating ABC transporters in chronic myeloid leukemias. J Biol Chem 2020; 295:6457-6471. [PMID: 32229586 DOI: 10.1074/jbc.ra120.013090] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Multidrug resistance (MDR) in cancer arises from cross-resistance to structurally- and functionally-divergent chemotherapeutic drugs. In particular, MDR is characterized by increased expression and activity of ATP-binding cassette (ABC) superfamily transporters. Sphingolipids are substrates of ABC proteins in cell signaling, membrane biosynthesis, and inflammation, for example, and their products can favor cancer progression. Glucosylceramide (GlcCer) is a ubiquitous glycosphingolipid (GSL) generated by glucosylceramide synthase, a key regulatory enzyme encoded by the UDP-glucose ceramide glucosyltransferase (UGCG) gene. Stressed cells increase de novo biosynthesis of ceramides, which return to sub-toxic levels after UGCG mediates incorporation into GlcCer. Given that cancer cells seem to mobilize UGCG and have increased GSL content for ceramide clearance, which ultimately contributes to chemotherapy failure, here we investigated how inhibition of GSL biosynthesis affects the MDR phenotype of chronic myeloid leukemias. We found that MDR is associated with higher UGCG expression and with a complex GSL profile. UGCG inhibition with the ceramide analog d-threo-1-(3,4,-ethylenedioxy)phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (EtDO-P4) greatly reduced GSL and monosialotetrahexosylganglioside levels, and co-treatment with standard chemotherapeutics sensitized cells to mitochondrial membrane potential loss and apoptosis. ABC subfamily B member 1 (ABCB1) expression was reduced, and ABCC-mediated efflux activity was modulated by competition with nonglycosylated ceramides. Consistently, inhibition of ABCC-mediated transport reduced the efflux of exogenous C6-ceramide. Overall, UGCG inhibition impaired the malignant glycophenotype of MDR leukemias, which typically overcomes drug resistance through distinct mechanisms. This work sheds light on the involvement of GSL in chemotherapy failure, and its findings suggest that targeted GSL modulation could help manage MDR leukemias.
Collapse
Affiliation(s)
- Eduardo J Salustiano
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho - Centro de Ciências da Saúde C1-042, Universidade Federal do Rio de Janeiro; Av. Carlos Chagas Filho 373 - Cidade Universitária, CEP 21941-902, Rio de Janeiro/RJ, Brazil
| | - Kelli M da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho - Centro de Ciências da Saúde C1-042, Universidade Federal do Rio de Janeiro; Av. Carlos Chagas Filho 373 - Cidade Universitária, CEP 21941-902, Rio de Janeiro/RJ, Brazil
| | - Leonardo Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho - Centro de Ciências da Saúde C1-042, Universidade Federal do Rio de Janeiro; Av. Carlos Chagas Filho 373 - Cidade Universitária, CEP 21941-902, Rio de Janeiro/RJ, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho - Centro de Ciências da Saúde C1-042, Universidade Federal do Rio de Janeiro; Av. Carlos Chagas Filho 373 - Cidade Universitária, CEP 21941-902, Rio de Janeiro/RJ, Brazil
| | - José O Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho - Centro de Ciências da Saúde C1-042, Universidade Federal do Rio de Janeiro; Av. Carlos Chagas Filho 373 - Cidade Universitária, CEP 21941-902, Rio de Janeiro/RJ, Brazil
| |
Collapse
|
10
|
Anticancer Potential of Resveratrol, β-Lapachone and Their Analogues. Molecules 2020; 25:molecules25040893. [PMID: 32085381 PMCID: PMC7070981 DOI: 10.3390/molecules25040893] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 01/19/2023] Open
Abstract
This review aims to explore the potential of resveratrol, a polyphenol stilbene, and beta-lapachone, a naphthoquinone, as well as their derivatives, in the development of new drug candidates for cancer. A brief history of these compounds is reviewed along with their potential effects and mechanisms of action and the most recent attempts to improve their bioavailability and potency against different types of cancer.
Collapse
|
11
|
Synthesis, characterization and antiproliferative activity of mixed ligand complexes of Cu2+ and Co2+ with lapachol. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Rumjanek VM, Maia RC, Salustiano EJ, Costa PR. Insights into the Biological Evaluation of Pterocarpanquinones and Carbapterocarpans with Anti-tumor Activity against MDR Leukemias. Anticancer Agents Med Chem 2019; 19:29-37. [DOI: 10.2174/1871520618666180420165128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 12/13/2022]
Abstract
In an attempt to find anticancer agents that could overcome multidrug resistance (MDR), two new
classes of modified isoflavonoids were designed and synthesized, and their effectiveness evaluated against a
vast array of tumor cell lines. Pterocarpanquinone (LQB-118) and 11a-aza-5-carbapterocarpan (LQB-223) were
the most promising. LQB-118 induced cell death, in vitro, in the µM range, to a number of human cancer cell
lines as well as to fresh tumor cells obtained from patients with acute or chronic myeloid leukemia, independent
on whether they exhibit the MDR phenotype or not. Furthermore, leukemic cells were more sensitive to LQB-
118 compared to cells from solid tumors. Given to mice, in vivo, LQB-118 affected the growth of melanoma,
Ehrlich carcinoma and prostate cancer cells. Conversely, no general toxicity was observed in vivo, by biochemical,
hematological, anatomical or histological parameters and toxicity in vitro against normal cells was low. The
process involved in tumor cell death seemed to vary according to cell type. Apoptosis was studied by externalization
of phosphatidylserine, DNA fragmentation, caspase-3 activation, reduced expression of XIAP and survivin,
ER stress, cytosolic calcium increase and mitochondrial membrane depolarization. Autophagy was also
evaluated inhibiting caspase-9, with no effect observed in beclin 1, whereas pre-treatment with rapamycin increased
cytotoxicity induced by LQB-118. In addition, LQB-118 increased ROS, inhibited NFκB nuclear translocation
and secretion of TNF-α, modulated microRNAs miR-9 and miR-21 and modified the cell cycle. Despite
being less studied, the cytotoxic effect of the 11a-aza-5-carbapterocarpan LQB-223 was present against several
tumor cell lines, including those with the MDR phenotype.
Collapse
Affiliation(s)
- Vivian M. Rumjanek
- Laboratorio de Imunologia Tumoral, Instituto de Bioquimica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel C. Maia
- Laboratorio de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Cancer (INCA), Rio de Janeiro, Brazil
| | - Eduardo J. Salustiano
- Laboratorio de Imunologia Tumoral, Instituto de Bioquimica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo R.R. Costa
- Laboratorio de Quimica Bio-organica (LQB), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Teixeira RI, Goulart JS, Corrêa RJ, Garden SJ, Ferreira SB, Netto-Ferreira JC, Ferreira VF, Miro P, Marin ML, Miranda MA, de Lucas NC. A photochemical and theoretical study of the triplet reactivity of furano- and pyrano-1,4-naphthoquionones towards tyrosine and tryptophan derivatives. RSC Adv 2019; 9:13386-13397. [PMID: 35519567 PMCID: PMC9063979 DOI: 10.1039/c9ra01939a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/22/2019] [Indexed: 01/08/2023] Open
Abstract
The photochemical reactivity of the triplet state of pyrano- and furano-1,4-naphthoquinone derivatives (1 and 2) has been examined employing nanosecond laser flash photolysis. The quinone triplets were efficiently quenched by l-tryptophan methyl ester hydrochloride, l-tyrosine methyl ester hydrochloride, N-acetyl-l-tryptophan methyl ester and N-acetyl-l-tyrosine methyl ester, substituted phenols and indole (k q ∼109 L mol-1 s-1). For all these quenchers new transients were formed in the quenching process. These were assigned to the corresponding radical pairs that resulted from a coupled electron/proton transfer from the phenols, indole, amino acids, or their esters, to the excited state of the quinone. The proton coupled electron transfer (PCET) mechanism is supported by experimental rate constants, isotopic effects and theoretical calculations. The calculations revealed differences between the hydrogen abstraction reactions of phenol and indole substrates. For the latter, the calculations indicate that electron transfer and proton transfer occur as discrete steps.
Collapse
Affiliation(s)
- Rodolfo I Teixeira
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | - Juliana S Goulart
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | - Rodrigo J Corrêa
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | - Simon J Garden
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | - Sabrina B Ferreira
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| | | | - Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmaceûtica Niterói Santa Rosa Brazil
| | - Paula Miro
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Valencia Spain
| | - M Luisa Marin
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Valencia Spain
| | - Miguel A Miranda
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Valencia Spain
| | - Nanci C de Lucas
- Instituto de Química - Universidade Federal do Rio de Janeiro Cidade Universitária RJ Brazil
| |
Collapse
|
14
|
Löcken H, Clamor C, Müller K. Napabucasin and Related Heterocycle-Fused Naphthoquinones as STAT3 Inhibitors with Antiproliferative Activity against Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2018; 81:1636-1644. [PMID: 30003778 DOI: 10.1021/acs.jnatprod.8b00247] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Napabucasin (6) and its angularly anellated isomer (7), for which the synthesis is described, together with related plant-derived naphthoquinones, were evaluated in vitro against human breast cancer (MDA-MB-231) and chronic myelogenous leukemia (K562) cells. As observed for β-lapachone (3), the active naphthoquinones all induced apoptosis in a cell-cycle-independent fashion. In contrast to the pyran-fused β-lapachone (3), however, the most potent furan-fused naphthoquinones were able to redox cycle and generate superoxide in cell-based assays, which was independent of NAD(P)H:quinone oxido-reductase 1. In a homogeneous time-resolved fluorescence (HTRF) assays with MDA-MB-231 cells, both napabucasin (6) and isonapabucasin (7) were identified as targeting STAT3 phosphorylation. In addition, drug affinity responsive target stability assays were performed to validate a direct interaction of the naphthoquinones with STAT3. Isonapabucasin (7) turned out to be twice as potent against STAT3 as napabucasin (6) in the HTRF assay, with an EC50 in the submicromolar range, which was in excellent agreement with the potency of both agents to inhibit the growth of MDA-MB-231 cells. Moreover, molecular docking experiments predicted different binding modes to the STAT3 SH2 domain for the linearly anellated napabucasin (6) and its angularly anellated isomer (7).
Collapse
Affiliation(s)
- Hauke Löcken
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus , Westphalian Wilhelms University , Corrensstraße 48 , D-48149 Münster , Germany
| | - Cinzia Clamor
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus , Westphalian Wilhelms University , Corrensstraße 48 , D-48149 Münster , Germany
| | - Klaus Müller
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus , Westphalian Wilhelms University , Corrensstraße 48 , D-48149 Münster , Germany
| |
Collapse
|
15
|
Investigation of chemical reactivity of 2-alkoxy-1,4-naphthoquinones and their anticancer activity. Bioorg Med Chem Lett 2018; 28:2023-2028. [DOI: 10.1016/j.bmcl.2018.04.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 11/27/2022]
|
16
|
Azeredo NF, Souza FP, Demidoff FC, Netto CD, Resende JA, Franco RW, Colepicolo P, Ferreira AM, Fernandes C. New strategies for the synthesis of naphthoquinones employing Cu(II) complexes: Crystal structures and cytotoxicity. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.08.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Costa MP, Feitosa ACS, Oliveira FCE, Cavalcanti BC, Dias GG, Caetano EWS, Sales FAM, Freire VN, Di Fiore S, Fischer R, Ladeira LO, da Silva Júnior EN, Pessoa C. Encapsulation of nor-β-lapachone into poly(d,l)-lactide- co-glycolide (PLGA) microcapsules: full characterization, computational details and cytotoxic activity against human cancer cell lines. MEDCHEMCOMM 2017; 8:1993-2002. [PMID: 30108718 PMCID: PMC6071939 DOI: 10.1039/c7md00196g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/06/2017] [Indexed: 11/21/2022]
Abstract
In this work, we characterize nor-β-lapachone-loaded (NβL-loaded) microcapsules prepared using an emulsification/solvent extraction technique. Features such as surface morphology, particle size distribution, zeta potential, optical absorption, Raman and Fourier transform infrared spectra, thermal analysis data, drug encapsulation efficiency, drug release kinetics and in vitro cytotoxicity were studied. Spherical microcapsules with a size of 1.03 ± 0.46 μm were produced with an encapsulation efficiency of approximately 19%. Quantum DFT calculations were also performed to estimate typical interaction energies between a single nor-β-lapachone molecule and the surface of the microparticles. The NβL-loaded PLGA microcapsules exhibited a pronounced initial burst release. After the in vitro treatment with NβL-loaded microcapsules, a clear phagocytosis of the spheres was observed in a few minutes. The cytotoxic activity against a set of cancer cell lines was investigated.
Collapse
Affiliation(s)
- Marcília P Costa
- Pharmacy Course , Federal University of Piauí , 64049-550 Teresina , PI , Brazil
| | - Anderson C S Feitosa
- Department of Physiology and Pharmacology , Federal University of Ceará , 60430-270 Fortaleza , CE , Brazil .
| | - Fátima C E Oliveira
- Department of Physiology and Pharmacology , Federal University of Ceará , 60430-270 Fortaleza , CE , Brazil .
| | - Bruno C Cavalcanti
- Department of Physiology and Pharmacology , Federal University of Ceará , 60430-270 Fortaleza , CE , Brazil .
| | - Gleiston G Dias
- Institute of Exact Sciences , Department of Chemistry , Federal University of Minas Gerais , Belo Horizonte , 31270-901 , MG , Brazil . ; Tel: +55 31 34095720
| | - Ewerton W S Caetano
- Department of Secondary School and Teachers College , Federal Institute of Ceará , 60040-531 Fortaleza , CE , Brazil
- Federal Institute of Ceará , 63503-790 Iguatu , CE , Brazil
| | - Francisco A M Sales
- Department of Secondary School and Teachers College , Federal Institute of Ceará , 60040-531 Fortaleza , CE , Brazil
- Federal Institute of Ceará , 63503-790 Iguatu , CE , Brazil
| | - Valder N Freire
- Department of Physics , Federal University of Ceará , 60455-760 Fortaleza , CE , Brazil
| | - Stefano Di Fiore
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , 52074 , Aachen , Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , 52074 , Aachen , Germany
- Institute for Molecular Biotechnology , RWTH Aachen University , 52074 Aachen , Germany
| | - Luiz O Ladeira
- Institute of Exact Sciences , Department of Physics , Federal University of Minas Gerais , Belo Horizonte , 31270-901 , MG , Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences , Department of Chemistry , Federal University of Minas Gerais , Belo Horizonte , 31270-901 , MG , Brazil . ; Tel: +55 31 34095720
| | - Claudia Pessoa
- Department of Physiology and Pharmacology , Federal University of Ceará , 60430-270 Fortaleza , CE , Brazil .
- Oswaldo Cruz Foundation (Fiocruz) , 60180-900 Fortaleza , CE , Brazil
| |
Collapse
|
18
|
Scatena GS, Cassiano NM, Netto CD, Costa PR, Cass QB, Batista JM. Preparative chiral separation and absolute configuration of the synthetic pterocarpanquinone LQB-118. Chirality 2017; 29:167-171. [DOI: 10.1002/chir.22696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Gabriel S. Scatena
- Department of Chemistry; Federal University of São Carlos - UFSCar; São Carlos Brazil
| | - Neila M. Cassiano
- Department of Chemistry; Federal University of São Carlos - UFSCar; São Carlos Brazil
| | | | - Paulo R.R. Costa
- Federal University of Rio de Janeiro - UFRJ; Rio de Janeiro Brazil
| | - Quezia B. Cass
- Department of Chemistry; Federal University of São Carlos - UFSCar; São Carlos Brazil
| | - João M. Batista
- Department of Chemistry; Federal University of São Carlos - UFSCar; São Carlos Brazil
| |
Collapse
|
19
|
Interaction between bioactive compound 11a-N-tosyl-5-deoxi-pterocarpan (LQB-223) and Calf thymus DNA: Spectroscopic approach, electrophoresis and theoretical studies. Int J Biol Macromol 2017; 96:223-233. [DOI: 10.1016/j.ijbiomac.2016.12.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/09/2016] [Accepted: 12/09/2016] [Indexed: 12/24/2022]
|
20
|
Pterocarpan scaffold: A natural lead molecule with diverse pharmacological properties. Eur J Med Chem 2017; 128:219-236. [PMID: 28189086 DOI: 10.1016/j.ejmech.2017.01.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/22/2022]
Abstract
Phytoalexins are substances produced by plants that act as potent inhibitors of pathogens. Pterocarpans are biologically active isoflavonoids most commonly found in the family Fabaceae that have the ability to act as phytoalexins. It is made up of a tetracyclic ring system possessing benzofuran-benzopyran. A very great number of pterocarpans have been isolated from natural sources and they are proved to have significant biological activities such as anti-microbial, anti-cancerous, anti-inflammatory and anti-malarial activities. Recently, pterocarpans gained lot of attention because of the broad range of anti-cancer activities in various cancer cell lines such as breast, leukemia, cervical, lung, colon and melanoma. Interestingly, pterocarpans exhibited inhibitory potency against many enzymes such as PTP1B, Neuraminidase, and α-glycosidase. In addition, they were shown to have anti-estrogenic and anti-diabetic activities. This review is a comprehensive inventory of the structures and sources of pterocarpans and it emphasizes on the biological evaluations of pterocarpans from various plant sources and their scope as a lead molecule.
Collapse
|
21
|
de Sena Pereira VS, Silva de Oliveira CB, Fumagalli F, da Silva Emery F, da Silva NB, de Andrade-Neto VF. Cytotoxicity, hemolysis and in vivo acute toxicity of 2-hydroxy-3-anilino-1,4-naphthoquinone derivatives. Toxicol Rep 2016; 3:756-762. [PMID: 28959602 PMCID: PMC5617738 DOI: 10.1016/j.toxrep.2016.09.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/29/2016] [Accepted: 09/15/2016] [Indexed: 02/08/2023] Open
Abstract
The 1,4-naphthoquinones, important members of the family of quinones are used as both crude extracts and as compound manipulated by the pharmaceutical industry. They have gained great emphasis by presenting different pharmacological properties as antibacterial, antiviral, antiprotozoal and anthelmintic, and has antitumor activity. Our aim was to evaluate the cytotoxicity, hemolytic activity and in vivo acute toxicity of three derivatives of 2-hydroxy-1,4-naphthoquinones. The cell viability in vitro against RAW Cell Line displayed IC50 ranging of 483.5–2044.8 μM, whereas in primary culture tests using murine macrophages, IC50 were 315.8–1408.0 μM for naphthoquinones derivatives 4a and 4c respectively, besides no hemolysis was observed at the dose tested. The in vivo acute toxicity assays exhibited a significant safety margin indicated by a lack of systemic and behavioral toxicity up to 300 mg/kg, and at a dose of 1000 mg/kg the derivatives not triggering signs of toxicity although the compound 4a have promoted hepatic steatosis and hyperemia in kidney tissue. Thereby, these modifications decrease the toxicity of the tested derivatives naphthoquinones, providing a high potential for the development of news drugs.
Collapse
Affiliation(s)
- Valeska Santana de Sena Pereira
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Cláudio Bruno Silva de Oliveira
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Fernando Fumagalli
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Flávio da Silva Emery
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Naisandra Bezerra da Silva
- Laboratory of Histotecnology, Department of Morfology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Valter F de Andrade-Neto
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
22
|
Riça IG, Netto CD, Rennó MN, Abreu PA, Costa PRR, da Silva AJM, Cavalcante MCM. Anti-inflammatory properties of pterocarpanquinone LQB-118 in mice. Bioorg Med Chem 2016; 24:4415-4423. [PMID: 27492193 DOI: 10.1016/j.bmc.2016.07.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/16/2016] [Accepted: 07/20/2016] [Indexed: 11/29/2022]
Abstract
Pterocarpanquinone (+/-)-LQB-118 presents antineoplastic and antiparasitic properties and also shows great inhibitory effect on TNF-α release in vitro. Here, its anti-inflammatory activity was evaluated in a lipopolysaccharide (LPS)-induced lung inflammation model in C57BL/6 mice. LPS inhalation induced a marked neutrophil infiltration to the lungs which was reduced by intraperitoneal treatment with (+/-)-LQB-118 in a similar manner to that of dexamethasone and even better than that of acetylsalicylic acid. Moreover, (+/-)-LQB-118 administration resulted in decrease of NF-κB activation and KC level in lungs, with a pronounced inhibitory effect on TNF-α release, measured in bronchoalveolar lavage fluid. Trying to understand the anti-inflammatory mechanism by which (+/-)-LQB-118 acts, we performed a molecular modeling analysis, including docking to estrogen receptors α and β. Results suggested that (+/-)-LQB-118 may bind to both receptors, with a similar orientation to 17-β-estradiol. Together, these results showed that (+/-)-LQB-118 exhibits an anti-inflammatory effect, most likely by inhibiting TNF-α release and NF-κB activation, which may be related to the estrogen receptor binding.
Collapse
Affiliation(s)
- Ingred G Riça
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Laboratório de Produtos Bioativos, Programa de Pós Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro Campus UFRJ-Macaé Professor Aloísio Teixeira, Macaé, Rio de Janeiro 27947-200, Brazil.
| | - Chaquip D Netto
- Laboratório de Química, Pólo Universitário, Universidade Federal do Rio de Janeiro Campus UFRJ-Macaé Professor Aloísio Teixeira, Macaé, Rio de Janeiro 27930-560, Brazil
| | - Magdalena N Rennó
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé, Universidade Federal do Rio de Janeiro Campus UFRJ-Macaé Professor Aloísio Teixeira, Macaé, Rio de Janeiro 27965-045, Brazil
| | - Paula A Abreu
- Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé, Universidade Federal do Rio de Janeiro Campus UFRJ-Macaé Professor Aloísio Teixeira, Macaé, Rio de Janeiro 27965-045, Brazil
| | - Paulo R R Costa
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Alcides J M da Silva
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Moisés C M Cavalcante
- Laboratório de Produtos Bioativos, Programa de Pós Graduação em Produtos Bioativos e Biociências, Universidade Federal do Rio de Janeiro Campus UFRJ-Macaé Professor Aloísio Teixeira, Macaé, Rio de Janeiro 27947-200, Brazil.
| |
Collapse
|
23
|
Controlled Release of Nor-β-lapachone by PLGA Microparticles: A Strategy for Improving Cytotoxicity against Prostate Cancer Cells. Molecules 2016; 21:molecules21070873. [PMID: 27384551 PMCID: PMC6273703 DOI: 10.3390/molecules21070873] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/14/2016] [Accepted: 06/24/2016] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer is one of the most common malignant tumors in males and it has become a major worldwide public health problem. This study characterizes the encapsulation of Nor-β-lapachone (NβL) in poly(d,l-lactide-co-glycolide) (PLGA) microcapsules and evaluates the cytotoxicity of the resulting drug-loaded system against metastatic prostate cancer cells. The microcapsules presented appropriate morphological features and the presence of drug molecules in the microcapsules was confirmed by different methods. Spherical microcapsules with a size range of 1.03 ± 0.46 μm were produced with an encapsulation efficiency of approximately 19%. Classical molecular dynamics calculations provided an estimate of the typical adsorption energies of NβL on PLGA. Finally, the cytotoxic activity of NβL against PC3M human prostate cancer cells was demonstrated to be significantly enhanced when delivered by PLGA microcapsules in comparison with the free drug.
Collapse
|
24
|
Salustiano EJ, Dumas ML, Silva-Santos GG, Netto CD, Costa PRR, Rumjanek VM. In vitro and in vivo antineoplastic and immunological effects of pterocarpanquinone LQB-118. Invest New Drugs 2016; 34:541-51. [PMID: 27189479 DOI: 10.1007/s10637-016-0359-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/11/2016] [Indexed: 11/29/2022]
Abstract
Cancer is a malignancy of worldwide prevalence, and although new therapeutic strategies are under investigation, patients still resort to reductive or palliative chemotherapy. Side effects are a great concern, since treatment can render patients susceptible to infections or secondary cancers. Thus, design of safer chemotherapeutic drugs must consider the risk of immunotoxicity. Pterocarpans are natural isoflavones that possess immunomodulatory and antineoplastic properties. Ubiquitous in nature, quinones are present in chemotherapeutic drugs such as doxorubicin and mitoxantrone. Our group has patented a hybrid molecule, the pterocarpanquinone LQB-118, and demonstrated its antineoplastic effect in vitro. In this report we describe its antineoplastic effect in vivo and assess its toxicity toward the immune system. Treated mice presented no changes in weight of primary and secondary organs of the immune system nor their cellular composition. Immunophenotyping showed that treatment increased CD4(+) thymocytes and proportionally reduced the CD4(+)CD8(+) subpopulation in the thymus. No significant changes were observed in T CD8(+) peripheral lymphocytes nor was the activation of fresh T cells affected after treatment. LQB-118 induced apoptosis in murine tumor cells in vitro, being synergistic with the autophagy promoter rapamycin. Furthermore, treatment significantly reduced ascites or solid Ehrlich and B16F10 melanoma growth in vivo, and ameliorated side effects such as cachexia. Based on its favorable preclinical profile and considering previous results obtained in vitro, this drug emerges as a promising candidate for further development.
Collapse
Affiliation(s)
- Eduardo J Salustiano
- Laboratory of Tumor Immunology, Leopoldo de Meis Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, Bloco H, 2° andar sala 003 Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brazil. .,Laboratory of Bioorganic Chemistry, Institute for Natural Products Research, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Matheus L Dumas
- Laboratory of Tumor Immunology, Leopoldo de Meis Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, Bloco H, 2° andar sala 003 Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Gabriel G Silva-Santos
- Laboratory of Tumor Immunology, Leopoldo de Meis Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, Bloco H, 2° andar sala 003 Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Chaquip D Netto
- Laboratory of Bioorganic Chemistry, Institute for Natural Products Research, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Chemistry, Macaé Institute of Metrology and Technology, Federal University of Rio de Janeiro, Professor Aloísio Teixeira Macaé Campus, Macaé, RJ, Brazil
| | - Paulo R R Costa
- Laboratory of Bioorganic Chemistry, Institute for Natural Products Research, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivian M Rumjanek
- Laboratory of Tumor Immunology, Leopoldo de Meis Institute of Medical Biochemistry (IBqM), Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, Bloco H, 2° andar sala 003 Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brazil
| |
Collapse
|
25
|
Pingaew R, Prachayasittikul V, Worachartcheewan A, Nantasenamat C, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Novel 1,4-naphthoquinone-based sulfonamides: Synthesis, QSAR, anticancer and antimalarial studies. Eur J Med Chem 2015; 103:446-59. [DOI: 10.1016/j.ejmech.2015.09.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/11/2015] [Accepted: 09/02/2015] [Indexed: 11/28/2022]
|
26
|
Wellington KW. Understanding cancer and the anticancer activities of naphthoquinones – a review. RSC Adv 2015. [DOI: 10.1039/c4ra13547d] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Naphthoquinone moieties are present in drugs such as doxorubicin which are used clinically to treat solid cancers.
Collapse
|
27
|
Nestal de Moraes G, Castro CP, Salustiano EJ, Dumas ML, Costas F, Lam EWF, Costa PRR, Maia RC. The pterocarpanquinone LQB-118 induces apoptosis in acute myeloid leukemia cells of distinct molecular subtypes and targets FoxO3a and FoxM1 transcription factors. Int J Oncol 2014; 45:1949-58. [PMID: 25174716 DOI: 10.3892/ijo.2014.2615] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/17/2014] [Indexed: 11/05/2022] Open
Abstract
Acute myeloid leukemia (AML) patients' outcome is usually poor, mainly because of drug resistance phenotype. The identification of new drugs able to overcome mechanisms of chemoresistance is essential. The pterocarpanquinone LQB-118 compound has been shown to have a potent cytotoxic activity in myeloid leukemia cell lines and patient cells. Our aim was to investigate if LQB-118 is able to target FoxO3a and FoxM1 signaling pathways while sensitizing AML cell lines. LQB-118 induced apoptosis in both AML cell lines HL60 (M3 FAB subtype) and U937 (M4/M5 FAB subtype). Cell death occurred independently of alterations in cell cycle distribution. In vivo administration revealed that LQB-118 was not cytotoxic to normal bone marrow-derived cells isolated from mice. LQB-118 induced FoxO3a nuclear translocation and upregulation of its direct transcriptional target Bim, in HL60 cells. However, LQB-118 induced FoxO3a nuclear exclusion, followed by Bim downregulation, in U937 cells. Concomitantly, LQB-118 exposure reduced FoxM1 and Survivin expression in U937 cells, but this effect was more subtle in HL60 cells. Taken together, our data suggest that LQB-118 has a selective and potent antitumor activity against AML cells with distinct molecular subtypes, and it involves differential modulation of the signaling pathways associated with FoxO3a and FoxM1 transcription factors.
Collapse
Affiliation(s)
- Gabriela Nestal de Moraes
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Carolina Pereira Castro
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Eduardo Jesus Salustiano
- Laboratory of Bioorganic Chemistry, Research Nucleous of Natural Products, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Matheus Lourenço Dumas
- Laboratory of Tumor Immunology, Leopoldo de Meis Medical Biochemistry Institute (IBqM-UFRJ), Rio de Janeiro, RJ, Brazil
| | - Fernanda Costas
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Eric Wing-Fai Lam
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Paulo Roberto Ribeiro Costa
- Laboratory of Bioorganic Chemistry, Research Nucleous of Natural Products, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Raquel Ciuvalschi Maia
- Laboratory of Cellular and Molecular Hemato-Oncology, Program of Molecular Hemato-Oncology, Brazilian National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
28
|
Saluja P, Khurana JM, Nikhil K, Roy P. Task-specific ionic liquid catalyzed synthesis of novel naphthoquinone–urazole hybrids and evaluation of their antioxidant and in vitro anticancer activity. RSC Adv 2014; 4:34594. [DOI: 10.1039/c4ra02917h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
|
29
|
Buarque CD, Salustiano EJ, Fraga KC, Alves BR, Costa PR. 11a-N-Tosyl-5-deoxi-pterocarpan (LQB-223), a promising prototype for targeting MDR leukemia cell lines. Eur J Med Chem 2014; 78:190-7. [DOI: 10.1016/j.ejmech.2014.03.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 01/01/2023]
|
30
|
Multidrug resistance in chronic myeloid leukaemia: how much can we learn from MDR-CML cell lines? Biosci Rep 2013; 33:BSR20130067. [PMID: 24070327 PMCID: PMC3839595 DOI: 10.1042/bsr20130067] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The hallmark of CML (chronic myeloid leukaemia) is the BCR (breakpoint cluster region)-ABL fusion gene. CML evolves through three phases, based on both clinical and pathological features: a chronic phase, an accelerated phase and blast crisis. TKI (tyrosine kinase inhibitors) are the treatment modality for patients with chronic phase CML. The therapeutic potential of the TKI imatinib is affected by BCR-ABL dependent an independent mechanisms. Development of MDR (multidrug resistance) contributes to the overall clinical resistance. MDR involves overexpression of ABC -transporters (ATP-binding-cassette transporter) among other features. MDR studies include the analysis of cancer cell lines selected for resistance. CML blast crisis is accompanied by increased resistance to apoptosis. This work reviews the role played by the influx transporter OCT1 (organic cation transporter 1), by efflux ABC transporters, molecules involved in the modulation of apoptosis (p53, Bcl-2 family, CD95, IAPs (inhibitors of apoptosis protein)], Hh and Wnt/β-catenin pathways, cytoskeleton abnormalities and other features described in leukaemic cells of clinical samples and CML cell lines. An MDR cell line, Lucena-1, generated from K562 by stepwise exposure to vincristine, was used as our model and some potential anticancer drugs effective against the MDR cell line and patients' samples are presented.
Collapse
|
31
|
Sunassee SN, Veale CG, Shunmoogam-Gounden N, Osoniyi O, Hendricks DT, Caira MR, de la Mare JA, Edkins AL, Pinto AV, da Silva Júnior EN, Davies-Coleman MT. Cytotoxicity of lapachol, β-lapachone and related synthetic 1,4-naphthoquinones against oesophageal cancer cells. Eur J Med Chem 2013; 62:98-110. [DOI: 10.1016/j.ejmech.2012.12.048] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/27/2012] [Accepted: 12/30/2012] [Indexed: 12/22/2022]
|
32
|
Portes JDA, Netto CD, da Silva AJM, Costa PRR, DaMatta RA, dos Santos TAT, De Souza W, Seabra SH. A new type of pterocarpanquinone that affects Toxoplasma gondii tachyzoites in vitro. Vet Parasitol 2011; 186:261-9. [PMID: 22177332 DOI: 10.1016/j.vetpar.2011.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 09/05/2011] [Accepted: 11/01/2011] [Indexed: 10/15/2022]
Abstract
Toxoplasma gondii, the agent of Toxoplasmosis, is an obligate intracellular protozoan able to infect a wide range of vertebrate cells, including nonprofessional and professional phagocytes. Therefore, drugs must have intracellular activities in order to control this parasite. The most common therapy for Toxoplasmosis is the combination of sulfadiazine and pyrimethamine. This treatment is associated with adverse reactions, thus, the development of new drugs is necessary. In previous studies, naphthoquinone derivatives showed anti-cancer activity functioning as agents capable of acting on groups of DNA, preventing cancer cells duplication. These derivatives also display anti-parasitic activity against Plasmodium falciparum and Leishmania amazonensis. The derivative pterocarpanquinone tested in this work resulted from the molecular hybridization between pterocarpans and naphtoquinone that presents anti-tumoral and anti-parasitic activities of lapachol. The aim of this work was to determine if this derivative is able to change T. gondii growth within LLC-MK2 cells. The drug did not arrest host cell growth, but was able to decrease the infection index of T. gondii with an IC(50) of 2.5 μM. Scanning and transmission electron microscopy analysis showed morphological changes of parasites including membrane damage. The parasite that survived tended to encyst as seen by Dolichos biflorus lectin staining and Bag-1 expression. These results suggest that pterocarpanquinones are drugs potentially important for the killing and encystment of T. gondii.
Collapse
Affiliation(s)
- Juliana de Araujo Portes
- Laboratório de Tecnologia em Cultura de Células, Centro Universitário Estadual da Zona Oeste (UEZO) - Av. Manuel Caldeira de Alvarenga, 1203, Campo Grande, Rio de Janeiro, RJ, CEP: 23070-200, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Buarque CD, Militão GC, Lima DJ, Costa-Lotufo LV, Pessoa C, de Moraes MO, Cunha-Junior EF, Torres-Santos EC, Netto CD, Costa PR. Pterocarpanquinones, aza-pterocarpanquinone and derivatives: Synthesis, antineoplasic activity on human malignant cell lines and antileishmanial activity on Leishmania amazonensis. Bioorg Med Chem 2011; 19:6885-91. [DOI: 10.1016/j.bmc.2011.09.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/07/2011] [Accepted: 09/14/2011] [Indexed: 11/27/2022]
|
34
|
Matsui T, Ito C, Oda M, Itoigawa M, Yokoo K, Okada T, Furukawa H. Lapachol suppresses cell proliferation and secretion of interleukin-6 and plasminogen activator inhibitor-1 of fibroblasts derived from hypertrophic scars. J Pharm Pharmacol 2011; 63:960-6. [DOI: 10.1111/j.2042-7158.2011.01292.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
The pathogenesis and therapy of hypertrophic scar have not yet been established. Our aim was to investigate the antiproliferative and antisecretory effects of lapachol, isolated from the stem bark of Avicennia rumphiana Hall. f., on hypertrophic scar fibroblasts.
Methods
The effects of lapachol on hypertrophic scar fibroblast proliferation were measured using the MTT assay, cell-cycle analyses and lactate dehydrogenase assays. The type I collagen α-chain (COL1A1), interleukin-6 (IL-6) and plasminogen activator inhibitor-1 (PAI-1) mRNA and/or protein levels of hypertrophic scar-fibroblasts were quantitated by real-time PCR and ELISA.
Key findings
Lapachol at 25 and 50 µm significantly inhibited the in vitro proliferation of hypertrophic scar fibroblasts, but not fibroblasts from non-lesional skin sites. In addition, lapachol had no apparent effect on cell cycle and lactate dehydrogenase activity in conditioned medium from lapachol-treated hypertrophic scar fibroblasts was nearly equal to that in medium from vehicle-treated cells. Lapachol treatment also inhibited COL1A1 and PAI-1 mRNA levels in hypertrophic scar fibroblasts, but did not affect IL-6 mRNA levels. The protein levels of IL-6 and PAI-1 in conditioned medium from hypertrophic scar fibroblasts treated with 50 µm lapachol were lower than those from vehicle-treated hypertrophic scar fibroblasts.
Conclusions
Lapachol decreased the proliferation rate of hypertrophic scar fibroblasts. As IL-6 and PAI-1 secretion was also lowered in lapachol-treated hypertrophic scar fibroblasts, our findings suggested that lapachol may have suppressed extracellular matrix hyperplasia in wound healing and possibly alleviated the formation of hypertrophic scar.
Collapse
Affiliation(s)
- Takuya Matsui
- Faculty of Pharmacy, Meijo University, Tempaku-ku, Nagoya, Japan
- Department of Physiology, Aichi Medical University, Nagakute-cho, Aichi-gun, Japan
| | - Chihiro Ito
- Faculty of Pharmacy, Meijo University, Tempaku-ku, Nagoya, Japan
| | - Makiko Oda
- Department of Plastic Surgery, Aichi Medical University, Nagakute-cho, Aichi-gun, Japan
| | - Masataka Itoigawa
- Faculty of Human Wellness, Tokai Gakuen University, Tempaku, Nagoya, Aichi, Japan
| | - Kazuhisa Yokoo
- Department of Plastic Surgery, Aichi Medical University, Nagakute-cho, Aichi-gun, Japan
| | - Tadashi Okada
- Department of Physiology, Aichi Medical University, Nagakute-cho, Aichi-gun, Japan
| | - Hiroshi Furukawa
- Faculty of Pharmacy, Meijo University, Tempaku-ku, Nagoya, Japan
| |
Collapse
|
35
|
Bair JS, Palchaudhuri R, Hergenrother PJ. Chemistry and Biology of Deoxynyboquinone, a Potent Inducer of Cancer Cell Death. J Am Chem Soc 2010; 132:5469-78. [DOI: 10.1021/ja100610m] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joseph S. Bair
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Rahul Palchaudhuri
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| | - Paul J. Hergenrother
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801
| |
Collapse
|
36
|
New pterocarpanquinones: synthesis, antineoplasic activity on cultured human malignant cell lines and TNF-alpha modulation in human PBMC cells. Bioorg Med Chem 2010; 18:1610-6. [PMID: 20117936 DOI: 10.1016/j.bmc.2009.12.073] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/24/2009] [Accepted: 12/31/2009] [Indexed: 01/12/2023]
Abstract
A new pterocarpanquinone (5a) was synthesized through a palladium catalyzed oxyarylation reaction and was transformed, through electrophilic substitution reaction, into derivatives 5b-d. These compounds showed to be active against human leukemic cell lines and human lung cancer cell lines. Even multidrug resistant cells were sensitive to 5a, which presented low toxicity toward peripheral blood mononuclear cells (PBMC) cells and decreased the production of TNF-alpha by these cells. In the laboratory these pterocarpanquinones were reduced by sodium dithionite in the presence of thiophenol at physiological pH, as NAD(P)H quinone oxidoredutase-1 (NQO1) catalyzed two-electron reduction, and the resulting hydroquinone undergo structural rearrangements, leading to the formation of Michael acceptors, which were intercepted as adducts of thiophenol. These results suggest that these compounds could be activated by bioreduction.
Collapse
|