Abstract
DNA-damaging agents, such as methylating agents, chloroethylating agents and platinum-based agents, have been extensively used as anticancer drugs. However, the side effects, high toxicity, lack of selectivity and resistance severely limit their clinical applications. In recent years, a strategy combining a DNA-damaging agent with a bioactive molecule (e.g., enzyme inhibitors) or carrier (e.g., steroid hormone and DNA intercalators) to produce a new 'combi-molecule' with improved efficacy or selectivity has been attempted to overcome these drawbacks. The combi-molecule simultaneously acts on two targets and is expected to possess better potency than the parent compounds. Many studies have shown DNA-damaging combi-molecules exhibiting excellent anticancer activity in vitro and in vivo. This review focuses on the development of combi-molecules, which possess increased DNA-damaging potency, anticancer efficacy and tumor selectivity and reduced side reactions than the parent compounds. The future opportunities and challenges in the discovery of combi-molecules were also discussed.
Collapse