1
|
Kim SJ, Lee K, Park J, Park M, Kim UJ, Kim SM, Ryu KH, Kang KW. CKD-516 potentiates the anti-cancer activity of docetaxel against epidermal growth factor receptor tyrosine kinase inhibitor-resistant lung cancer. Toxicol Res 2023; 39:61-69. [PMID: 36726834 PMCID: PMC9839922 DOI: 10.1007/s43188-022-00146-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is the leading cause of cancer death. Although docetaxel has been used as a second- or third-line treatment for non-small cell lung cancer (NSCLC), the objective response rate is less than 10%. Hence, there is a need to improve the clinical efficacy of docetaxel monotherapy; combination therapy should be considered. Here, we show that CKD-516, a vascular disruption agent, can be combined with docetaxel to treat epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI)-resistant NSCLC. CKD-516 was orally bioavailable; neither CKD-516 nor docetaxel affected the mean plasma concentration-time profile or pharmacokinetic parameters of the other drug. CKD-516 and docetaxel synergistically inhibited the growth of H1975 (with an L858R/T790M double mutation of EGFR) and A549 (with a KRAS mutation) lung cancer cell lines. In addition, docetaxel plus CKD-516 delayed tumor growth in-and extended the lifespan of-tumor-bearing mice. Thus, combination CKD-516 and docetaxel therapy could be used to treat EGFR-TKI-resistant NSCLC.
Collapse
Affiliation(s)
- Soo Jin Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826 Republic of Korea
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, 16995, Gyeonggi-do, Republic of Korea
| | - Kyunghyeon Lee
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, 16995, Gyeonggi-do, Republic of Korea
| | - Jaewoo Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Miso Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - U. Ji Kim
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, 16995, Gyeonggi-do, Republic of Korea
| | - Se-mi Kim
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, 16995, Gyeonggi-do, Republic of Korea
| | - Keun Ho Ryu
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, 16995, Gyeonggi-do, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
2
|
Wordeman L, Vicente JJ. Microtubule Targeting Agents in Disease: Classic Drugs, Novel Roles. Cancers (Basel) 2021; 13:5650. [PMID: 34830812 PMCID: PMC8616087 DOI: 10.3390/cancers13225650] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Microtubule-targeting agents (MTAs) represent one of the most successful first-line therapies prescribed for cancer treatment. They interfere with microtubule (MT) dynamics by either stabilizing or destabilizing MTs, and in culture, they are believed to kill cells via apoptosis after eliciting mitotic arrest, among other mechanisms. This classical view of MTA therapies persisted for many years. However, the limited success of drugs specifically targeting mitotic proteins, and the slow growing rate of most human tumors forces a reevaluation of the mechanism of action of MTAs. Studies from the last decade suggest that the killing efficiency of MTAs arises from a combination of interphase and mitotic effects. Moreover, MTs have also been implicated in other therapeutically relevant activities, such as decreasing angiogenesis, blocking cell migration, reducing metastasis, and activating innate immunity to promote proinflammatory responses. Two key problems associated with MTA therapy are acquired drug resistance and systemic toxicity. Accordingly, novel and effective MTAs are being designed with an eye toward reducing toxicity without compromising efficacy or promoting resistance. Here, we will review the mechanism of action of MTAs, the signaling pathways they affect, their impact on cancer and other illnesses, and the promising new therapeutic applications of these classic drugs.
Collapse
Affiliation(s)
| | - Juan Jesus Vicente
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA;
| |
Collapse
|
3
|
Kim HK, Kang JW, Park YW, Kim JY, Kim M, Kim SJ, Kim SM, Ho Ryu K, Yoon S, Kim Y, Cho JY, Lee KS, Yun T, Kim K, Kwak MH, Kim TS, Chung J, Park JW. Phase I and pharmacokinetic study of the vascular-disrupting agent CKD-516 (NOV120401) in patients with refractory solid tumors. Pharmacol Res Perspect 2021; 8:e00568. [PMID: 32162844 PMCID: PMC7066534 DOI: 10.1002/prp2.568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
We report a phase I pharmacological study of an oral formulation of CKD‐516, a vascular‐disrupting agent, in patients with refractory solid tumors. Twenty‐seven patients (16 in the dose‐escalation cohort and 11 in the expansion cohort) received a single daily dose (5‐25 mg) of CKD‐516 five days per week. Nausea (67%) and diarrhea (63%) were the most common treatment‐related adverse events. The recommended phase II dose of oral CKD‐516 was 20 mg/d (15 mg/d with a body surface area (BSA) <1.65 m2). Notably, S‐516 half‐lives in patients receiving 15‐20 mg CKD‐516/d significantly differed between patients with and without splenomegaly that is suggestive of portal hypertension associated with liver cirrhosis (6.1 vs 4.6 hours, respectively). Of 11 patients without splenomegaly who completed at least one cycle of a daily CKD‐516 dose of either 15 or 20 mg, only one patient (9.1%) suffered from any dose‐limiting toxicity. We conclude that a daily oral dose of 15 or 20 mg CKD‐516 five days per week could be tolerable in patients without liver cirrhosis.
Collapse
Affiliation(s)
- Hark Kyun Kim
- National Cancer Center Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jeong Won Kang
- National Cancer Center Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Young-Whan Park
- National Oncoventure, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jung Young Kim
- National Oncoventure, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Minchae Kim
- National Oncoventure, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Soo Jin Kim
- CKD Research Center, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Se-Mi Kim
- CKD Research Center, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Keun Ho Ryu
- CKD Research Center, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Seonghae Yoon
- Clinical Trials Center, Seoul National University Bundang Hospital, Bundang-gu, Seongnam-si, Republic of Korea
| | - Yun Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Keun Seok Lee
- National Cancer Center Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Tak Yun
- National Cancer Center Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kiwon Kim
- National Cancer Center Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Mi Hyang Kwak
- National Cancer Center Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Tae-Sung Kim
- National Cancer Center Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jinsoo Chung
- National Cancer Center Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Joong-Won Park
- National Cancer Center Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Kim MY, Shin JY, Kim JO, Son KH, Kim YS, Jung CK, Kang JH. Anti-tumor efficacy of CKD-516 in combination with radiation in xenograft mouse model of lung squamous cell carcinoma. BMC Cancer 2020; 20:1057. [PMID: 33143663 PMCID: PMC7607852 DOI: 10.1186/s12885-020-07566-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 10/26/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Hypoxic tumors are known to be highly resistant to radiotherapy and cause poor prognosis in non-small cell lung cancer (NSCLC) patients. CKD-516, a novel vascular disrupting agent (VDA), mainly affects blood vessels in the central area of the tumor and blocks tubulin polymerization, thereby destroying the aberrant tumor vasculature with a rapid decrease in blood, resulting in rapid tumor cell death. Therefore, we evaluated the anti-tumor efficacy of CKD-516 in combination with irradiation (IR) and examined tumor necrosis, delayed tumor growth, and expression of proteins involved in hypoxia and angiogenesis in this study. METHODS A xenograft mouse model of lung squamous cell carcinoma was established, and the tumor was exposed to IR 5 days per week. CKD-516 was administered with two treatment schedules (day 1 or days 1 and 5) 1 h after IR. After treatment, tumor tissues were stained with hematoxylin and eosin, and pimonidazole. HIF-1α, Glut-1, VEGF, CD31, and Ki-67 expression levels were evaluated using immunohistochemical staining. RESULTS Short-term treatment with IR alone and CKD-516 + IR (d1) significantly reduced tumor volume (p = 0.006 and p = 0.048, respectively). Treatment with CKD-516 + IR (d1 and d1, 5) resulted in a marked reduction in the number of blood vessels (p < 0.005). More specifically, CKD-516 + IR (d1) caused the most extensive tumor necrosis, which resulted in a significantly large hypoxic area (p = 0.02) and decreased HIF-1α, Glut-1, VEGF, and Ki-67 expression. Long-term administration of CKD-516 + IR reduced tumor volume and delayed tumor growth. This combination also greatly reduced the number of blood vessels (p = 0.0006) and significantly enhanced tumor necrosis (p = 0.004). CKD-516 + IR significantly increased HIF-1α expression (p = 0.0047), but significantly reduced VEGF expression (p = 0.0046). CONCLUSIONS Taken together, our data show that when used in combination, CKD-516 and IR can significantly enhance anti-tumor efficacy compared to monotherapy in lung cancer xenograft mice.
Collapse
Affiliation(s)
- Min-Young Kim
- Laboratory of Medical Oncology, Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung-Young Shin
- Laboratory of Medical Oncology, Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong-Oh Kim
- Laboratory of Medical Oncology, Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyoung-Hwa Son
- Laboratory of Medical Oncology, Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeon Sil Kim
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan Kwon Jung
- Department of Pathology, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin-Hyoung Kang
- Laboratory of Medical Oncology, Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Oncology, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| |
Collapse
|
5
|
Smolarczyk R, Czapla J, Jarosz-Biej M, Czerwinski K, Cichoń T. Vascular disrupting agents in cancer therapy. Eur J Pharmacol 2020; 891:173692. [PMID: 33130277 DOI: 10.1016/j.ejphar.2020.173692] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Tumor blood vessel formation is a key process for tumor expansion. Tumor vessels are abnormal and differ from normal vessels in architecture and components. Besides oxygen and nutrients supply, the tumor vessels system, due to its abnormality, is responsible for: hypoxia formation, and metastatic routes. Tumor blood vessels can be a target of anti-cancer therapies. There are two types of therapies that target tumor vessels. The first one is the inhibition of the angiogenesis process. However, the inhibition is often ineffective because of alternative angiogenesis mechanism activation. The second type is a specific targeting of existing tumor blood vessels by vascular disruptive agents (VDAs). There are three groups of VDAs: microtubule destabilizing drugs, flavonoids with anti-vascular functions, and tumor vascular targeted drugs based on endothelial cell receptors. However, VDAs possess some limitations. They may be cardiotoxic and their application in therapy may leave viable residual, so called, rim cells on the edge of the tumor. However, it seems that a well-designed combination of VDAs with other anti-cancer drugs may bring a significant therapeutic effect. In this article, we describe three groups of vascular disruptive agents with their advantages and disadvantages. We mention VDAs clinical trials. Finally, we present the current possibilities of VDAs combination with other anti-cancer drugs.
Collapse
Affiliation(s)
- Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| | - Justyna Czapla
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| | - Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| | - Kyle Czerwinski
- University of Manitoba, Faculty of Science. 66 Chancellors Cir, Winnipeg, Canada.
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| |
Collapse
|
6
|
Deng X, Pi Y, Li Z, Xiong R, Liu J, Zhao J, Xie Z, Lei X, Tang G. FB-15 inhibits MGC-803 cells growth by regulating energy metabolism. Chem Biol Interact 2020; 327:109186. [PMID: 32590071 DOI: 10.1016/j.cbi.2020.109186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/06/2020] [Accepted: 06/17/2020] [Indexed: 11/17/2022]
Abstract
In this study, we scrutinized the anticancer effects of FB-15 on human gastric carcinoma MGC-803 cells in vitro and vivo, and its preliminary effect on tubulin and HIF-1α. We confirmed that FB-15 not only inhibited the proliferation of a large number of cells in a concentration and time-dependent manner but also inhibited proliferation of a single cell to form clones. FB-15 manifested little cytotoxicity for normal stomach cells GES-1. The flow cytometry analysis displayed that FB-15 induced apoptosis MGC-803 cells and mainly arrested cells in the S phase in a concentration-dependent manner. The results of the wound healing assay indicated that FB-15 suppressed cell migration. Furthermore, the western blotting showed that FB-15 down-regulated the expression of β3-tubulin and HIF-1α, consistent with Immunohistochemical assay. The binding modes of FB-15 with tubulin were clarified by molecular docking. FB-15 significantly suppressed the growth of MGC-803 gastric cancer tumors. The inhibitory effect of FB-15 on tumor growth was superior to 5-Fu. Taken together, these results provided evidence for FB-15 to be used as an effective anticancer drug candidate for gastric cancer.
Collapse
Affiliation(s)
- Xiangping Deng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China
| | - Yiyuan Pi
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China; Xiangnan University, Chenzhou City, Hunan Province, PR China
| | - Zhongli Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China
| | - Runde Xiong
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China
| | - Juan Liu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China
| | - Jingduo Zhao
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China.
| |
Collapse
|
7
|
Tolba MF. Revolutionizing the landscape of colorectal cancer treatment: The potential role of immune checkpoint inhibitors. Int J Cancer 2020; 147:2996-3006. [PMID: 32415713 DOI: 10.1002/ijc.33056] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/25/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022]
Abstract
Colorectal cancer (CRC) represents the third cause of cancer-related mortalities worldwide. The progression of CRC to the metastatic phase significantly compromises the overall survival rates. Despite the advances in the therapeutic protocols, CRC treatment is still challenging. Cancer immunotherapy joined the ranks of surgery, chemotherapy, radiotherapy and targeted therapy as the fifth pillar in the foundation of cancer therapeutics. Interruption of the immunosuppressive signals within the tumor microenvironment and reactivation of antitumor immunity via targeting the molecular immune checkpoints generated promising therapeutic outcomes in several types of hard-to-treat cancers. The year 2017 witnessed the first US Food and Drug Administration (FDA) approval of immune checkpoint inhibitor (ICI) immunotherapy for the management of CRC. The approval was granted to pembrolizumab (anti-PD-1) for the treatment of patients with advanced/metastatic solid malignancies with mismatch-repair deficiency including CRCs. Such natively immunogenic tumors constitute only a minor percentage of all CRCs. Therefore, it is imperative to utilize novel combinatorial regimens to enhance the response of a wider range of CRC tumors to cancer immunotherapy and help in extending the survival rates in patients with advanced/metastatic disease. This review highlights the novel approaches under clinical development to overcome the resistance of CRCs to immunotherapy and improve the therapeutic outcomes.
Collapse
Affiliation(s)
- Mai F Tolba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Kim SJ, Jegal KH, Im JH, Park G, Kim S, Jeong HG, Cho IJ, Kang KW. Involvement of ER stress and reactive oxygen species generation in anti-cancer effect of CKD-516 for lung cancer. Cancer Chemother Pharmacol 2020; 85:685-697. [PMID: 32157413 DOI: 10.1007/s00280-020-04043-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE CKD-516 (Valecobulin), a vascular-disrupting agent, inhibits microtubule elongation. We evaluated the effect of CKD-516 on lung cancer cells and the underlying molecular mechanisms. METHODS The effects of S516, an active metabolite of CKD-516, were evaluated in HUVECs and three lung cancer cell lines and by a microtubule polymerization assay. Tubulin cross-linking was used to identify the binding site of S516 on tubulin, and Western blotting was performed to identify the intracellular pathways leading to cell death. Subcutaneous lung cancer xenograft models were used to assess the in vivo effect of CKD-516 on tumor growth. RESULTS S516 targeted the colchicine binding site on β-tubulin. In lung cancer cells, S516 increased endoplasmic reticulum (ER) stress and induced reactive oxygen species (ROS) generation by mitochondria and the ER. In addition, CKD-516 monotherapy strongly inhibited the growth of lung cancer xenograft tumors and exerted a synergistic effect with carboplatin. CONCLUSION The findings suggest that CKD-516 exerts an anticancer effect in company with inducing ER stress and ROS production via microtubule disruption in lung cancer cells. CKD-516 may thus have therapeutic potential for lung cancer.
Collapse
Affiliation(s)
- Soo Jin Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, Yongin-si, Gyeonggi-do, 16995, Republic of Korea
| | - Kyung Hwan Jegal
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji-Hye Im
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gyutae Park
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, Yongin-si, Gyeonggi-do, 16995, Republic of Korea
| | - Suntae Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Il Je Cho
- Department of Herbal Formulation, MRC-GHF, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do, 38610, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
9
|
Le Large TYS, El Hassouni B, Funel N, Kok B, Piersma SR, Pham TV, Olive KP, Kazemier G, van Laarhoven HWM, Jimenez CR, Bijlsma MF, Giovannetti E. Proteomic analysis of gemcitabine-resistant pancreatic cancer cells reveals that microtubule-associated protein 2 upregulation associates with taxane treatment. Ther Adv Med Oncol 2019; 11:1758835919841233. [PMID: 31205498 PMCID: PMC6535709 DOI: 10.1177/1758835919841233] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/23/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Chemoresistance hampers the treatment of patients suffering from pancreatic ductal adenocarcinoma (PDAC). Here we aimed to evaluate the (phospho)proteome of gemcitabine-sensitive and gemcitabine-resistant PDAC cells to identify novel therapeutic targets and predictive biomarkers. Methods: The oncogenic capabilities of gemcitabine-sensitive and resistant PDAC cells were evaluated in vitro and in vivo. Cultured cells were analyzed by label-free proteomics. Differential proteins and phosphopeptides were evaluated by gene ontology and for their predictive or prognostic biomarker potential with immunohistochemistry of tissue microarrays. Results: Gemcitabine-resistant cells had increased potential to induce xenograft tumours (p value < 0.001). Differential analyses showed that proteins associated with gemcitabine resistance are correlated with microtubule regulation. Indeed, gemcitabine-resistant cells displayed an increased sensitivity for paclitaxel in vitro (p < 0.001) and nab-paclitaxel had a strong anti-tumour efficacy in vivo. Microtubule-associated protein 2 (MAP2) was found to be highly upregulated (p = 0.002, fold change = 10) and phosphorylated in these resistant cells. Expression of MAP2 was correlated with a poorer overall survival in patients treated with gemcitabine in the palliative (p = 0.037) and adjuvant setting (p = 0.014). Conclusions: These data show an explanation as to why the combination of gemcitabine with nab-paclitaxel is effective in PDAC patients. The identified gemcitabine-resistance marker, MAP2, emerged as a novel prognostic marker in PDAC patients treated with gemcitabine and warrants further clinical investigation.
Collapse
Affiliation(s)
- Tessa Ya Sung Le Large
- Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, NetherlandsLEXOR, Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, NetherlandsCancer Pharmacology Lab, AIRC-Start-Up, University Hospital of Pisa, Pisa, Italy
| | - Btissame El Hassouni
- Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Niccola Funel
- Cancer Pharmacology Lab, AIRC-Start-Up, University Hospital of Pisa, Pisa, Italy
| | - Bart Kok
- Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sander R Piersma
- Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Thang V Pham
- Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Kenneth P Olive
- Departments of Medicine and Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York City, NY, USA
| | - Geert Kazemier
- Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Hanneke W M van Laarhoven
- Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Connie R Jimenez
- Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Maarten F Bijlsma
- LEXOR, Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Elisa Giovannetti
- Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands
| |
Collapse
|
10
|
Chemoembolization with Vascular Disrupting Agent CKD-516 Dissolved in Ethiodized Oil in Combination with Doxorubicin: A VX2 Tumor Model Study. J Vasc Interv Radiol 2018; 29:1078-1084. [DOI: 10.1016/j.jvir.2018.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/25/2018] [Accepted: 03/16/2018] [Indexed: 12/16/2022] Open
|
11
|
Ham SJ, Choi Y, Lee SI, Kim J, Kim YI, Chung JW, Kim KW. Enhanced efficacy of radiofrequency ablation for hepatocellular carcinoma using a novel vascular disrupting agent, CKD-516. Hepatol Int 2017; 11:446-451. [PMID: 28721452 DOI: 10.1007/s12072-017-9811-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 06/13/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND CKD-516 is a novel vascular disrupting agent that shuts down intratumoral blood flow. We therefore hypothesized that concomitant administration of CKD-516 would enhance the therapeutic efficacy of radiofrequency ablation (RFA) by reducing heat sink effects. We assessed the effects of the combination of CKD-516 and RFA in a rat orthotopic hepatocellular carcinoma (HCC) model. METHODS Rat HCC cells (N1-S1) were engrafted into the hepatic lobe of Sprague-Dawley (SD) rats. Mice were randomly divided into two groups: RFA-only and CKD-RFA. In the CKD-RFA group, CKD-516 was administered by intraperitoneal injection 2 h before RFA. Ablation zone size was measured on triphenyltetrazolium chloride-stained specimens. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was performed to evaluate the area of apoptosis/necrosis in the ablation zone. Immunohistochemistry with anti-CD31 antibody was performed to evaluate the effect of CKD-516 on tumor vessels. RESULTS Ablation zone size was significantly larger in the CKD-RFA group than in the RFA-only group (243.10 ± 74.39 versus 123.30 ± 28.17 mm2, p < 0.001). On TUNEL staining, the area of apoptosis/necrosis was also significantly larger in the CKD-RFA group than in the RFA-only group (274.44 ± 140.78 versus 143.74 ± 90.13 mm2; p = 0.006). Immunohistochemistry with anti-CD31 antibody revealed patent tumor vessels in the RFA-only group, while collapsed vessels were seen in the CKD-RFA group, indicating a vascular shutdown effect of CKD-516. CONCLUSION Concomitant administration of CKD-516 during RFA can increase the ablation zone of tumors due to its vascular disrupting effect.
Collapse
Affiliation(s)
- Su Jung Ham
- Bioimaging Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.,Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | - YoonSeok Choi
- Biomedical Translational Research Center, GangNeung Asan Medical Center, Sacheon-myoen, Bangdong-kil 38, GangNeung, Gangwon, 210-711, Korea.,Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Korea
| | - Seul-I Lee
- Bioimaging Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.,Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | - Jinil Kim
- Bioimaging Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.,Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea
| | - Young Il Kim
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Korea
| | - Jin Wook Chung
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Korea
| | - Kyung Won Kim
- Bioimaging Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea. .,Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Korea.
| |
Collapse
|
12
|
Oh DY, Kim TM, Han SW, Shin DY, Lee YG, Lee KW, Kim JH, Kim TY, Jang IJ, Lee JS, Bang YJ. Phase I Study of CKD-516, a Novel Vascular Disrupting Agent, in Patients with Advanced Solid Tumors. Cancer Res Treat 2015; 48:28-36. [PMID: 25715767 PMCID: PMC4720091 DOI: 10.4143/crt.2014.258] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/14/2014] [Indexed: 11/21/2022] Open
Abstract
PURPOSE CKD-516 is a newly developed vascular disrupting agent. This phase I dose-escalation study of CKD-516 was conducted to determine maximum-tolerated dose (MTD), safety, pharmacokinetics, and preliminary antitumor efficacy in patients with advanced solid tumors. MATERIALS AND METHODS Patients received CKD-516 intravenously on D1 and D8 every 3 weeks, in a standard 3+3 design. Safety was evaluated by National Cancer Institute Common Terminology Criteria for Adverse Events ver. 4.02 and response was assessed by Response Evaluation Criteria in Solid Tumor ver. 1.1. RESULTS Twenty-three patients were treated with CKD-516 at seven dosing levels: 1 mg/m(2)/day (n=3), 2 mg/m(2)/day (n=3), 3.3 mg/m(2)/day (n=3), 5 mg/m(2)/day (n=3), 7 mg/m(2)/day (n=3), 9 mg/m(2)/day (n=6), and 12 mg/m(2)/day (n=2). Mean age was 54 and 56.5% of patients were male. Two dose-limiting toxicities, which were both grade 3 hypertension, were observed in two patients at 12 mg/m(2)/day. The MTD was determined as 12 mg/m(2)/day. Most common adverse events were gastrointestinal adverse events (diarrhea, 34.8% [30.4% grade 1/2, 13.0% grade 3]; nausea, 21.7% [all grade 1/2]; vomiting, 21.7% [all grade 1/2]), myalgia (17.4%, all grade 1/2), and abdominal pain (21.7% [21.7% grade 1/2, 4.3% grade 3]). The pharmacokinetic study showed the dose-linearity of all dosing levels. Among 23 patients, six patients (26.1%) showed stable disease. Median progression-free survival was 39 days (95% confidence interval, 37 to 41 days). CONCLUSION This study demonstrates feasibility of CKD-516, novel vascular disrupting agent, in patients with advanced solid tumor. MTD of CKD-516 was defined as 12 mg/m(2)/day on D1 and D8 every 3 weeks.
Collapse
Affiliation(s)
- Do-Youn Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea ; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Tae-Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea ; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Sae-Won Han
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea ; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea ; Department of Internal Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Yun Gyoo Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea ; Department of Internal Medicine, Kangbuk Samsung Medical Center, Seoul, Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Tae-You Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea ; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University Hospital, Seoul, Korea
| | - Jong-Seok Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yung-Jue Bang
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea ; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|