1
|
Cüvitoğlu A, Isik Z. Network neighborhood operates as a drug repositioning method for cancer treatment. PeerJ 2023; 11:e15624. [PMID: 37456868 PMCID: PMC10340098 DOI: 10.7717/peerj.15624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Computational drug repositioning approaches are important, as they cost less compared to the traditional drug development processes. This study proposes a novel network-based drug repositioning approach, which computes similarities between disease-causing genes and drug-affected genes in a network topology to suggest candidate drugs with highest similarity scores. This new method aims to identify better treatment options by integrating systems biology approaches. It uses a protein-protein interaction network that is the main topology to compute a similarity score between candidate drugs and disease-causing genes. The disease-causing genes were mapped on this network structure. Transcriptome profiles of drug candidates were taken from the LINCS project and mapped individually on the network structure. The similarity of these two networks was calculated by different network neighborhood metrics, including Adamic-Adar, PageRank and neighborhood scoring. The proposed approach identifies the best candidates by choosing the drugs with significant similarity scores. The method was experimented on melanoma, colorectal, and prostate cancers. Several candidate drugs were predicted by applying AUC values of 0.6 or higher. Some of the predictions were approved by clinical phase trials or other in-vivo studies found in literature. The proposed drug repositioning approach would suggest better treatment options with integration of functional information between genes and transcriptome level effects of drug perturbations and diseases.
Collapse
Affiliation(s)
- Ali Cüvitoğlu
- The Graduate School of Natural and Applied Sciences, Dokuz Eylül University, Izmir, Turkiye
| | - Zerrin Isik
- Computer Engineering Department, Engineering Faculty, Dokuz Eylül University, Izmir, Turkiye
| |
Collapse
|
2
|
Iyer KK, van Erp NP, Tauriello DV, Verheul HM, Poel D. Lost in translation: Revisiting the use of tyrosine kinase inhibitors in colorectal cancer. Cancer Treat Rev 2022; 110:102466. [DOI: 10.1016/j.ctrv.2022.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
|
3
|
Programmed cell death, redox imbalance, and cancer therapeutics. Apoptosis 2021; 26:385-414. [PMID: 34236569 DOI: 10.1007/s10495-021-01682-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 02/06/2023]
Abstract
Cancer cells are disordered by nature and thus featured by higher internal redox level than healthy cells. Redox imbalance could trigger programmed cell death if exceeded a certain threshold, rendering therapeutic strategies relying on redox control a possible cancer management solution. Yet, various programmed cell death events have been consecutively discovered, complicating our understandings on their associations with redox imbalance and clinical implications especially therapeutic design. Thus, it is imperative to understand differences and similarities among programmed cell death events regarding their associations with redox imbalance for improved control over these events in malignant cells as well as appropriate design on therapeutic approaches relying on redox control. This review addresses these issues and concludes by bringing affront cold atmospheric plasma as an emerging redox controller with translational potential in clinics.
Collapse
|
4
|
Fei Z, Lijuan Y, Xi Y, Wei W, Jing Z, Miao D, Shuwen H. Gut microbiome associated with chemotherapy-induced diarrhea from the CapeOX regimen as adjuvant chemotherapy in resected stage III colorectal cancer. Gut Pathog 2019; 11:18. [PMID: 31168325 PMCID: PMC6489188 DOI: 10.1186/s13099-019-0299-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/13/2019] [Indexed: 12/12/2022] Open
Abstract
Background Chemotherapy induced diarrhea (CID) is a common side effect in patients receiving chemotherapy for cancer. The aim of our study was to explore the association between gut microorganisms and CID from the CapeOX regimen in resected stage III colorectal cancer (CRC) patients. Results After screening and identification, 17 stool samples were collected from resected stage III CRC patients undergoing the CapeOX regimen. Bacterial 16S ribosomal RNA genes was sequenced, and a bioinformatics analysis was executed to screen for the distinctive gut microbiome and the functional metabolism associated with CID due to the CapeOX regimen. The gut microbial community richness and community diversity were lower in CID (p < 0.05 vs control group). Klebsiella pneumoniae was the most predominant species (31.22%) among the gut microbiome in CRC patients with CID. There were 75 microorganisms with statistically significant differences at the species level between the CRC patients with and without CID (LDA, linear discriminant analysis score > 2), and there were 23 pathways that the differential microorganisms might be involved in. Conclusions The gut microbial community structure and diversity have changed in CRC patients with CID. It may provide novel insights into the prevention and treatment of CID. Electronic supplementary material The online version of this article (10.1186/s13099-019-0299-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zuo Fei
- 1Department of Gastroenterology, Huzhou Central Hospital, No. 198 Hongqi Road, Huzhou, 313000 Zhejiang China
| | - Yin Lijuan
- 2Department of Rheumatology & Immunology, Huzhou Central Hospital, No. 198 Hongqi Road, Huzhou, 313000 Zhejiang China
| | - Yang Xi
- 3Department of Intervention and Radiotherapy, Huzhou Central Hospital, No. 198 Hongqi Road, Huzhou, 313000 Zhejiang China
| | - Wu Wei
- 1Department of Gastroenterology, Huzhou Central Hospital, No. 198 Hongqi Road, Huzhou, 313000 Zhejiang China
| | - Zhong Jing
- 4Department of Central Laboratory, Huzhou Central Hospital, No. 198 Hongqi Road, Huzhou, 313000 Zhejiang China
| | - Da Miao
- 5Medical College of Nursing, Huzhou University, No. 759 Erhuan East Road, Huzhou, 313000 Zhejiang China
| | - Han Shuwen
- 6Department of Medical Oncology, Huzhou Central Hospital, No. 198 Hongqi Road, Huzhou, 313000 Zhejiang China
| |
Collapse
|
5
|
Kim ST, Lee J, Lee SJ, Park SH, Jung SH, Park YS, Lim HY, Kang WK, Park JO. Prospective phase II trial of pazopanib plus CapeOX (capecitabine and oxaliplatin) in previously untreated patients with advanced gastric cancer. Oncotarget 2018; 7:24088-96. [PMID: 27003363 PMCID: PMC5029686 DOI: 10.18632/oncotarget.8175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/25/2016] [Indexed: 02/06/2023] Open
Abstract
We designed a single-arm, open label phase II study to determine the efficacy and toxicity of the combination of pazopanib with CapeOx (capecitabine and oxaliplatin) in metastatic /recurrent advanced gastric cancer (AGC) patients. Previously untreated AGC patients received capecitabine (850 mg/m2 bid, day 1–14) plus oxaliplatin (130 mg/m2, day 1) in combination with pazopanib (800 mg, day 1–21) every three weeks. Treatment was continued until progression of the disease or intolerable toxicity was observed. In all, 66 patients were treated with pazopanib plus CapeOx. The median age of the patients was 51.5 years (range, 23.0–77), and the median ECOG performance status was 1 (0–1). Among all 66 patients, one complete response and 37 partial responses were observed (overall response rate, 62.4%; 95% confidence interval (CI), 45.7–73.5% accounting for the 2-stage design of this trial). Stable disease was observed in 23 patients (34.8%), revealing a 92.4% disease control rate. The median progression free survival and overall survival were 6.5 months (95% CI, 5.6–7.4) and 10.5 months (95% CI, 8.1–12.9), respectively. Thirty-four patients (51.5%) experienced a treatment-related toxicity of grade 3 or more. The most common toxicities of grade 3 or more were neutropenia (15.1%), anemia (10.6%), thrombocytopenia (10.6%), anorexia (7.6%), nausea (3.0%), and vomiting (3.0%). There were no treatment-related deaths. The combination of pazopanib and CapeOx showed moderate activity and an acceptable toxicity profile as a first-line treatment in metastatic / recurrent AGC patients (ClinicalTrials.gov NCT01130805).
Collapse
Affiliation(s)
- Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Su Jin Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sin-Ho Jung
- Center of Biostatistics and Clinical Epidemiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Suk Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|