1
|
O’Reilly EM, Lee JW, Lowery MA, Capanu M, Stadler ZK, Moore MJ, Dhani N, Kindler HL, Estrella H, Maynard H, Golan T, Segal A, Salo-Mullen EE, Yu KH, Epstein AS, Segal M, Brenner R, Do RK, Chen AP, Tang LH, Kelsen DP. Phase 1 trial evaluating cisplatin, gemcitabine, and veliparib in 2 patient cohorts: Germline BRCA mutation carriers and wild-type BRCA pancreatic ductal adenocarcinoma. Cancer 2018; 124:1374-1382. [PMID: 29338080 PMCID: PMC5867226 DOI: 10.1002/cncr.31218] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/22/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND A phase 1 trial was used to evaluate a combination of cisplatin, gemcitabine, and escalating doses of veliparib in patients with untreated advanced pancreatic ductal adenocarcinoma (PDAC) in 2 cohorts: a germline BRCA1/2-mutated (BRCA+) cohort and a wild-type BRCA (BRCA-) cohort. The aims were to determine the safety, dose-limiting toxicities (DLTs), maximum tolerated dose, and recommended phase 2 dose (RP2D) of veliparib combined with cisplatin and gemcitabine and to assess the antitumor efficacy (Response Evaluation Criteria in Solid Tumors, version 1.1) and overall survival. METHODS Gemcitabine and cisplatin were dosed at 600 and 25 mg/m2 , respectively, over 30 minutes on days 3 and 10 of a 21-day cycle. Four dose levels of veliparib were evaluated: 20 (dose level 0), 40 (dose level 1), and 80 mg (dose level 2) given orally twice daily on days 1 to 12 and 80 mg given twice daily on days 1 to 21 (dose level 2A [DL2A]). RESULTS Seventeen patients were enrolled: 9 BRCA+ patients, 7 BRCA- patients, and 1 patient with an unknown status. DLTs were reached at DL2A (80 mg twice daily on days 1 to 21). Two of the 5 patients in this cohort (40%) experienced grade 4 neutropenia and thrombocytopenia. Two grade 5 events occurred on protocol. The objective response rate in the BRCA+ cohort was 7 of 9 (77.8%). The median overall survival for BRCA+ patients was 23.3 months (95% confidence interval [CI], 3.8-30.2 months). The median overall survival for BRCA- patients was 11 months (95% CI, 1.5-12.1 months). CONCLUSIONS The RP2D of veliparib was 80 mg by mouth twice daily on days 1 to 12 in combination with cisplatin and gemcitabine; the DLT was myelosuppression. Substantial antitumor activity was seen in BRCA+ PDAC. A randomized phase 2 trial is currently evaluating cisplatin and gemcitabine with and without veliparib for BRCA+ PDAC (NCT01585805). Cancer 2018;124:1374-82. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Eileen M. O’Reilly
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine, NY, NY
| | | | | | | | - Zsofia K. Stadler
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine, NY, NY
| | - Malcolm J. Moore
- Princess Margaret Cancer Centre- University Health Network, Toronto, ON
| | - Neesha Dhani
- Princess Margaret Cancer Centre- University Health Network, Toronto, ON
| | | | | | | | - Talia Golan
- Sheba Medical Center, Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amiel Segal
- Share Zedek Medical Center, Jerusalem, Israel
| | | | - Kenneth H. Yu
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine, NY, NY
| | - Andrew S. Epstein
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine, NY, NY
| | - Michal Segal
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Robin Brenner
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Richard K. Do
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine, NY, NY
| | | | - Laura H. Tang
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine, NY, NY
| | - David P. Kelsen
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medicine, NY, NY
| |
Collapse
|
2
|
Pak PJ, Kang BH, Park SH, Sung JH, Joo YH, Jung SH, Chung N. Antitumor effects of herbal mixture extract in the pancreatic adenocarcinoma cell line PANC1. Oncol Rep 2016; 36:2875-2883. [DOI: 10.3892/or.2016.5067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/10/2016] [Indexed: 11/06/2022] Open
|
3
|
Qingyihuaji Formula Inhibits Pancreatic Cancer and Prolongs Survival by Downregulating Hes-1 and Hey-1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:145016. [PMID: 26783407 PMCID: PMC4691523 DOI: 10.1155/2015/145016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/28/2015] [Accepted: 11/26/2015] [Indexed: 12/12/2022]
Abstract
The dire prognosis of pancreatic cancer has not markedly improved during past decades. The present study was carried out to explore the effect of Qingyihuaji formula (QYHJ) on inhibiting pancreatic cancer and prolonging survival in related Notch signaling pathway. Proliferation of pancreatic cancer cells (SW1990 and PANC-1) was detected by MTT assay at 24, 48, and 72 h with exposure to various concentrations (0.08-50 mg/mL) of QYHJ water extract. Pancreatic tumor models of nude mice were divided into three groups randomly (control, QYHJ, and gemcitabine). mRNA and protein expression of Notch target genes (Hes-1, Hey-1, Hey-2, and Hey-L) in dissected tumor tissue were detected. Results showed that proliferation of SW1990 cells and PANC-1 cells was inhibited by QYHJ water extract in a dose-dependent and time-dependent manner. QYHJ effectively inhibited tumor growth and prolonged survival time in nude mice. Expression of both Hes-1 and Hey-1 was decreased significantly in QYHJ group, suggesting that Hes-1 and Hey-1 in Notch signaling pathway might be potential targets for QYHJ treatment. This research could help explain the clinical effectiveness of QYHJ and may provide advanced pancreatic cancer patients with a new therapeutic option.
Collapse
|
4
|
Mohammed A, Janakiram NB, Pant S, Rao CV. Molecular Targeted Intervention for Pancreatic Cancer. Cancers (Basel) 2015; 7:1499-542. [PMID: 26266422 PMCID: PMC4586783 DOI: 10.3390/cancers7030850] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/24/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) remains one of the worst cancers, with almost uniform lethality. PC risk is associated with westernized diet, tobacco, alcohol, obesity, chronic pancreatitis, and family history of pancreatic cancer. New targeted agents and the use of various therapeutic combinations have yet to provide adequate treatments for patients with advanced cancer. To design better preventive and/or treatment strategies against PC, knowledge of PC pathogenesis at the molecular level is vital. With the advent of genetically modified animals, significant advances have been made in understanding the molecular biology and pathogenesis of PC. Currently, several clinical trials and preclinical evaluations are underway to investigate novel agents that target signaling defects in PC. An important consideration in evaluating novel drugs is determining whether an agent can reach the target in concentrations effective to treat the disease. Recently, we have reported evidence for chemoprevention of PC. Here, we provide a comprehensive review of current updates on molecularly targeted interventions, as well as dietary, phytochemical, immunoregulatory, and microenvironment-based approaches for the development of novel therapeutic and preventive regimens. Special attention is given to prevention and treatment in preclinical genetically engineered mouse studies and human clinical studies.
Collapse
Affiliation(s)
- Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Naveena B Janakiram
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Shubham Pant
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
5
|
Yu J, Chen Q. Antitumor Activities of Rauwolfia vomitoria Extract and Potentiation of Gemcitabine Effects Against Pancreatic Cancer. Integr Cancer Ther 2014; 13:217-225. [DOI: 10.1177/1534735414532010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Pancreatic cancer is one of the most lethal malignancies with very limited treatment option. In the effort of enhancing the effect of the conventional chemotherapeutic drug gemcitabine against pancreatic cancer, we investigated in vitro and in vivo the anticancer effect of a β-carboline-enriched extract from the plant Rauwolfia vomitoria (Rau), either alone or in combination with gemcitabine, in preclinical pancreatic cancer models. Rau induced apoptosis in pancreatic cancer cells in a concentration-dependent manner, and completely inhibited colony formation of PANC-1 cells in soft agar. The combination of Rau and gemcitabine had synergistic effect in inhibiting cell growth with dose reduction effect for gemcitabine. In an orthotopic pancreatic cancer mouse model, PANC-1 tumor growth was significantly suppressed by Rau treatment. Metastasis was inhibited by Rau. Adding Rau to gemcitabine treatment reduced tumor burden and metastatic potential in the gemcitabine non-responsive tumor. These data suggest that Rau possesses anti–pancreatic cancer activity and could improve effect of gemcitabine.
Collapse
Affiliation(s)
- Jun Yu
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Qi Chen
- University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
6
|
Ghosn M, Kourie HR, Karak FE, Hanna C, Antoun J, Nasr D. Optimum chemotherapy in the management of metastatic pancreatic cancer. World J Gastroenterol 2014; 20:2352-2357. [PMID: 24605032 PMCID: PMC3942838 DOI: 10.3748/wjg.v20.i9.2352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/24/2013] [Accepted: 01/15/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most devastating solid tumors, and it remains one of the most difficult to treat. The treatment of metastatic pancreatic cancer (MPC) is systemic, based on chemotherapy or best supportive care, depending on the performance status of the patient. Two chemotherapeutical regimens have produced substantial benefits in the treatment of MPC: gemcitabine in 1997; and FOLFIRIONOX in 2011. FOLFIRINOX improved the natural history of MPC, with overall survival (OS) of 11.1 mo. Nab-paclitaxel associated with gemcitabine is a newly approved regimen for MPC, with a median OS of 8.6 mo. Despite multiple trials, this targeted therapy was not efficient in the treatment of MPC. Many new molecules targeting the proliferation and survival pathways, immune response, oncofetal signaling and the epigenetic changes are currently undergoing phase I and II trials for the treatment of MPC, with many promising results.
Collapse
|