1
|
Yu T, Lok BH. Strategies to Target Chemoradiotherapy Resistance in Small Cell Lung Cancer. Cancers (Basel) 2024; 16:3438. [PMID: 39456533 PMCID: PMC11506711 DOI: 10.3390/cancers16203438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Small cell lung cancer (SCLC) is a lethal form of lung cancer with few treatment options and a high rate of relapse. While SCLC is initially sensitive to first-line DNA-damaging chemo- and radiotherapy, relapse disease is almost universally therapy-resistant. As a result, there has been interest in understanding the mechanisms of therapeutic resistance in this disease. Conclusions: Progress has been made in elucidating these mechanisms, particularly as they relate to the DNA damage response and SCLC differentiation and transformation, leading to many clinical trials investigating new therapies and combinations. Yet there remain many gaps in our understanding, such as the effect of epigenetics or the tumor microenvironment on treatment response, and no single mechanism has been found to be ubiquitous, suggesting a significant heterogeneity in the mechanisms of acquired resistance. Nevertheless, the advancement of techniques in the laboratory and the clinic will improve our ability to study this disease, especially in patient populations, and identify methods to surmount therapeutic resistance.
Collapse
Affiliation(s)
- Tony Yu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Benjamin H. Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2M9, Canada
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 6 Queen’s Park Crescent, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
2
|
Peng X, He Z, Yuan D, Liu Z, Rong P. Lactic acid: The culprit behind the immunosuppressive microenvironment in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189164. [PMID: 39096976 DOI: 10.1016/j.bbcan.2024.189164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
As a solid tumor with high glycolytic activity, hepatocellular carcinoma (HCC) produces excess lactic acid and increases extracellular acidity, thus forming a unique immunosuppressive microenvironment. L-lactate dehydrogenase (LDH) and monocarboxylate transporters (MCTs) play a very important role in glycolysis. LDH is the key enzyme for lactic acid (LA) production, and MCT is responsible for the cellular import and export of LA. The synergistic effect of the two promotes the formation of an extracellular acidic microenvironment. In the acidic microenvironment of HCC, LA can not only promote the proliferation, survival, transport and angiogenesis of tumor cells but also have a strong impact on immune cells, ultimately leading to an inhibitory immune microenvironment. This article reviews the role of LA in HCC, especially its effect on immune cells, summarizes the progress of LDH and MCT-related drugs, and highlights the potential of immunotherapy targeting lactate combined with HCC.
Collapse
Affiliation(s)
- Xiaopei Peng
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Zhenhu He
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Dandan Yuan
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Zhenguo Liu
- Department of Infectious Disease, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Pengfei Rong
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
3
|
Arboleya L, Braña I, Pardo E, Loredo M, Queiro R. Osteomalacia in Adults: A Practical Insight for Clinicians. J Clin Med 2023; 12:jcm12072714. [PMID: 37048797 PMCID: PMC10094844 DOI: 10.3390/jcm12072714] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/26/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
The term osteomalacia (OM) refers to a series of processes characterized by altered mineralization of the skeleton, which can be caused by various disorders of mineral metabolism. OM can be genetically determined or occur due to acquired disorders, among which the nutritional origin is particularly relevant, due to its wide epidemiological extension and its nature as a preventable disease. Among the hereditary diseases associated with OM, the most relevant is X-linked hypophosphatemia (XLH), which manifests in childhood, although its consequences persist into adulthood where it can acquire specific clinical characteristics, and, although rare, there are XLH cases that reach the third or fourth decade of life without a diagnosis. Some forms of OM present very subtle initial manifestations which cause both considerable diagnosis and treatment delay. On occasions, the presence of osteopenia and fragility fractures leads to an erroneous diagnosis of osteoporosis, which may imply the prescription of antiresorptive drugs (i.e., bisphosphonates or denosumab) with catastrophic consequences for OM bone. On the other hand, some radiological features of OM can be confused with those of axial spondyloarthritis and lead to erroneous diagnoses. The current prevalence of OM is not known and is very likely that its incidence is much higher than previously thought. Moreover, OM explains part of the therapeutic failures that occur in patients diagnosed with other bone diseases. Therefore, it is essential that clinicians who treat adult skeletal diseases take into account the considerations provided in this practical review when focusing on the diagnosis and treatment of their patients with bone diseases.
Collapse
Affiliation(s)
- Luis Arboleya
- Rheumatology Division, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Ignacio Braña
- Rheumatology Division, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Estefanía Pardo
- Rheumatology Division, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Marta Loredo
- Rheumatology Division, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Rubén Queiro
- Rheumatology Division, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
- ISPA Translational Immunology Division, Biohealth Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- School of Medicine, Oviedo University, 33011 Oviedo, Spain
| |
Collapse
|
4
|
Yang Y, Chen Y, Wu JH, Ren Y, Liu B, Zhang Y, Yu H. Targeting regulated cell death with plant natural compounds for cancer therapy: A revisited review of apoptosis, autophagy-dependent cell death, and necroptosis. Phytother Res 2023; 37:1488-1525. [PMID: 36717200 DOI: 10.1002/ptr.7738] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 02/01/2023]
Abstract
Regulated cell death (RCD) refers to programmed cell death regulated by various protein molecules, such as apoptosis, autophagy-dependent cell death, and necroptosis. Accumulating evidence has recently revealed that RCD subroutines have several links to many types of human cancer; therefore, targeting RCD with pharmacological small-molecule compounds would be a promising therapeutic strategy. Moreover, plant natural compounds, small-molecule compounds synthesized from plant sources, and their derivatives have been widely reported to regulate different RCD subroutines to improve potential cancer therapy. Thus, in this review, we focus on updating the intricate mechanisms of apoptosis, autophagy-dependent cell death, and necroptosis in cancer. Moreover, we further discuss several representative plant natural compounds and their derivatives that regulate the above-mentioned three subroutines of RCD, and their potential as candidate small-molecule drugs for the future cancer treatment.
Collapse
Affiliation(s)
- Yuanyuan Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanmei Chen
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Hao Wu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yueting Ren
- Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Systematic Review of Gossypol/AT-101 in Cancer Clinical Trials. Pharmaceuticals (Basel) 2022; 15:ph15020144. [PMID: 35215257 PMCID: PMC8879263 DOI: 10.3390/ph15020144] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/11/2022] Open
Abstract
The potential of gossypol and of its R-(−)-enantiomer (R-(−)-gossypol acetic acid, AT-101), has been evaluated for treatment of cancer as an independent agent and in combination with standard chemo-radiation-therapies, respectively. This review assesses the evidence for safety and clinical effectiveness of oral gossypol/AT-101 in treating various types of cancer. The databases PubMed, MEDLINE, Cochrane, and ClinicalTrials.gov were examined. Phase I and II trials as well as single arm and randomized trials were included in this review. Results were screened to determine if they met inclusion criteria and then summarized using a narrative approach. A total of 17 trials involving 759 patients met the inclusion criteria. Overall, orally applied gossypol/AT-101 at low doses (30 mg daily or lower) was determined as well tolerable either as monotherapy or in combination with chemo-radiation. Adverse events should be strictly monitored and were successfully managed by dose-reduction or treating symptoms. There are four randomized trials, two performed in patients with advanced non-small cell lung cancer, one in subjects with head and neck cancer, and one in patients with metastatic castration-resistant prostate cancer. Thereby, standard chemotherapy (either docetaxel (two trials) or docetaxel plus cisplatin or docetaxel plus prednisone) was tested with and without AT-101. Within these trials, a potential benefit was observed in high-risk patients or in some patients with prolongation in progression-free survival or in overall survival. Strikingly, the most recent clinical trial combined low dose AT-101 with docetaxel, fluorouracil, and radiation, achieving complete responses in 11 of 13 patients with gastroesophageal carcinoma (median duration of 12 months) and a median progression-free survival of 52 months. The promising results shown in subsets of patients supports the need of further specification of AT-101 sensitive cancers as well as for the establishment of effective AT-101-based therapy. In addition, the lowest recommended dose of gossypol and its precise toxicity profile need to be confirmed in further studies. Randomized placebo-controlled trials should be performed to validate these data in large cohorts.
Collapse
|
6
|
Liu H, Zhang R, Zhang D, Zhang C, Zhang Z, Fu X, Luo Y, Chen S, Wu A, Zeng W, Qu K, Zhang H, Wang S, Shi H. Cyclic RGD-Decorated Liposomal Gossypol AT-101 Targeting for Enhanced Antitumor Effect. Int J Nanomedicine 2022; 17:227-244. [PMID: 35068931 PMCID: PMC8766252 DOI: 10.2147/ijn.s341824] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction (-)-Gossypol (AT-101), the (-)-enantiomer of the natural compound gossypol, has shown significant inhibitory effects on various types of cancers such as osteosarcoma, myeloma, glioma, lung cancer, and prostate cancer. However, the clinical application of (-)-gossypol was often hindered by its evident side effects and the low bioavailability via oral administration, which necessitated the development of suitable (-)-gossypol preparations to settle the problems. In this study, injectable cyclic RGD (cRGD)-decorated liposome (cRGD-LP) was prepared for tumor-targeted delivery of (-)-gossypol. Methods The cRGD-LP was prepared based on cRGD-modified lipids. For comparison, a non-cRGD-containing liposome (LP) with a similar chemical composition to cRGD-LP was specially designed. The physicochemical properties of (-)-gossypol-loaded cRGD-LP (Gos/cRGD-LP) were investigated in terms of the drug loading efficiency, particle size, morphology, drug release, and so on. The inhibitory effect of Gos/cRGD-LP on the proliferation of tumor cells in vitro was evaluated using different cell lines. The biodistribution of cRGD-LP in vivo was investigated via the near-infrared (NIR) fluorescence imaging technique. The antitumor effect of Gos/cRGD-LP in vivo was evaluated in PC-3 tumor-bearing nude mice. Results Gos/cRGD-LP had an average particle size of about 62 nm with a narrow size distribution, drug loading efficiency of over 90%, and sustained drug release for over 96 h. The results of NIR fluorescence imaging demonstrated the enhanced tumor targeting of cRGD-LP in vivo. Moreover, Gos/cRGD-LP showed a significantly enhanced inhibitory effect on PC-3 tumors in mice, with a tumor inhibition rate of over 74% and good biocompatibility. Conclusion The incorporation of cRGD could significantly enhance the tumor-targeting effect of the liposomes and improve the antitumor effect of the liposomal (-)-gossypol in vivo, which indicated the potential of Gos/cRGD-LP that warrants further investigation for clinical applications of this single-isomer drug.
Collapse
Affiliation(s)
- Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
- Correspondence: Hao Liu School of Pharmacy, Southwest Medical University, No. 1 Section 1, Xiang Lin Road, Longmatan District, Luzhou City, Sichuan Province, 646000, People’s Republic of ChinaTel +86 830 3162291 Email
| | - Ruirui Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Chun Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Xiujuan Fu
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Yu Luo
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Siwei Chen
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Ailing Wu
- Department of Anesthesiology, The First People’s Hospital of Neijiang, Neijiang, Sichuan, People’s Republic of China
| | - Weiling Zeng
- Department of Scientific Research, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Kunyan Qu
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Hao Zhang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Sijiao Wang
- School of Pharmacy, Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
| | - Houyin Shi
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou City, Sichuan, People’s Republic of China
- Houyin Shi Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182 Chunhui Road, Longmatan District, Luzhou City, Sichuan Province, 646000, People’s Republic of ChinaTel +86 830 3162209 Email
| |
Collapse
|
7
|
Yu Q, Sun Y. Targeting Protein Neddylation to Inactivate Cullin-RING Ligases by Gossypol: A Lucky Hit or a New Start? DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1-8. [PMID: 33442232 PMCID: PMC7797302 DOI: 10.2147/dddt.s286373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/16/2020] [Indexed: 01/26/2023]
Abstract
Cullin-RING E3 ligases (CRLs) are the largest family of E3 ubiquitin ligases, responsible for about 20% of the protein degradation by the ubiquitin-proteasome system (UPS). Given their vital roles in multiple cellular processes, and over-activation in many human cancers, CRLs are validated as promising targets for anti-cancer therapies. Activation of CRLs requires cullin neddylation, a process catalysed by three neddylation enzymes. Recently, our group established an AlphaScreen-based in vitro cullin neddylation assay and employed it for high-throughput screening to search for small-molecule inhibitors targeting cullin neddylation. During our pilot screen, gossypol, a natural product extracted from cottonseeds, was identified as one of the most potent neddylation inhibitors of cullin-1 and cullin-5. We further demonstrated that gossypol blocks cullin neddylation by binding to cullin-1/-5 to inactivate CRL1/5 ligase activity, leading to accumulation of MCL-1 and NOXA, the substrates of CRL1 and CRL5, respectively. The combination of gossypol and an MCL-1 inhibitor synergistically enhanced the anti-proliferative effect in multiple human cancer cell lines. Our study unveiled a rational combination of two previously known inhibitors of the Bcl-2 family for enhanced anti-cancer efficacy and identified a novel activity of gossypol as an inhibitor of CRL1 and CRL5 E3s, thus providing a new possibility in the development of novel CRL inhibitors for anti-cancer therapy.
Collapse
Affiliation(s)
- Qing Yu
- Department of Head and Neck Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Science, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.,Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
8
|
Bose S, Zhang C, Le A. Glucose Metabolism in Cancer: The Warburg Effect and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:3-15. [PMID: 34014531 PMCID: PMC9639450 DOI: 10.1007/978-3-030-65768-0_1] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Otto Warburg observed a peculiar phenomenon in 1924, unknowingly laying the foundation for the field of cancer metabolism. While his contemporaries hypothesized that tumor cells derived the energy required for uncontrolled replication from proteolysis and lipolysis, Warburg instead found them to rapidly consume glucose, converting it to lactate even in the presence of oxygen. The significance of this finding, later termed the Warburg effect, went unnoticed by the broader scientific community at that time. The field of cancer metabolism lay dormant for almost a century awaiting advances in molecular biology and genetics, which would later open the doors to new cancer therapies [2, 3].
Collapse
Affiliation(s)
- Sminu Bose
- Division of Hematology and Oncology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biology, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, USA
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
9
|
Mallick DJ, Eastman A. AT101 [(-)-Gossypol] Selectively Inhibits MCL1 and Sensitizes Carcinoma to BH3 Mimetics by Inducing and Stabilizing NOXA. Cancers (Basel) 2020; 12:E2298. [PMID: 32824203 PMCID: PMC7464284 DOI: 10.3390/cancers12082298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Anti-apoptotic BCL2 proteins are important targets for cancer therapy as cancers depend on their activity for survival. Direct inhibitors of MCL1 have entered clinical trials, although their efficacy may be limited by toxicity. An alternative approach may be to induce the pro-apoptotic protein NOXA which selectively inhibits MCL1 in cells. Many compounds originally proposed as inhibitors of the BCL2 family were subsequently found to induce the pro-apoptotic protein NOXA through the unfolded protein response. In the present study, we compared various putative BH3 mimetics across a panel of carcinoma cell lines and measured expression of NOXA protein and mRNA, as well as the kinetics of NOXA induction. We found that AT101 [(-)-gossypol] induces high levels of NOXA in carcinoma cell lines yet cells survive. When combined with an appropriate BCL2 or BCL-XL inhibitor, NOXA-dependent sensitization occurs. NOXA protein continues to accumulate for many hours after AT101 is removed, providing a window for administering these combinations. As MCL1 promotes drug resistance and overall survival, we propose that NOXA induction is an alternative therapeutic strategy to target MCL1 and either kill cancer cells that are dependent on MCL1 or sensitize cancer cells to other BCL2 inhibitors.
Collapse
Affiliation(s)
- David J. Mallick
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA;
| | - Alan Eastman
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA;
- Department of Molecular and Systems Biology, and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| |
Collapse
|
10
|
Pervushin NV, Senichkin VV, Zhivotovsky B, Kopeina GS. Mcl-1 as a "barrier" in cancer treatment: Can we target it now? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 351:23-55. [PMID: 32247581 DOI: 10.1016/bs.ircmb.2020.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the last two decades, the study of Mcl-1, an anti-apoptotic member of the Bcl-2 family, attracted researchers due to its important role in cancer cell survival and tumor development. The significance of Mcl-1 protein in resistance to chemotherapeutics makes it an attractive target in cancer therapy. Here, we discuss the diverse possibilities for indirect Mcl-1 inhibition through its downregulation, for example, via targeting for proteasomal degradation or blockage of translation and transcription. We also provide an overview of the direct blocking of protein-protein interactions with pro-apoptotic Bcl-2 family proteins, including examples of the most promising regulators of Mcl-1 and selective BH3-mimetics, which at present are under clinical evaluation. Moreover, several approaches for the co-targeting of Mcl-1 and other proteins (e.g., CDKs) are also presented. In addition, we highlight the broad spectrum of problems that accompanied the discovery and development of effective Mcl-1 inhibitors.
Collapse
Affiliation(s)
| | | | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
11
|
Pérez-Hernández M, Arias A, Martínez-García D, Pérez-Tomás R, Quesada R, Soto-Cerrato V. Targeting Autophagy for Cancer Treatment and Tumor Chemosensitization. Cancers (Basel) 2019; 11:E1599. [PMID: 31635099 PMCID: PMC6826429 DOI: 10.3390/cancers11101599] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a tightly regulated catabolic process that facilitates nutrient recycling from damaged organelles and other cellular components through lysosomal degradation. Deregulation of this process has been associated with the development of several pathophysiological processes, such as cancer and neurodegenerative diseases. In cancer, autophagy has opposing roles, being either cytoprotective or cytotoxic. Thus, deciphering the role of autophagy in each tumor context is crucial. Moreover, autophagy has been shown to contribute to chemoresistance in some patients. In this regard, autophagy modulation has recently emerged as a promising therapeutic strategy for the treatment and chemosensitization of tumors, and has already demonstrated positive clinical results in patients. In this review, the dual role of autophagy during carcinogenesis is discussed and current therapeutic strategies aimed at targeting autophagy for the treatment of cancer, both under preclinical and clinical development, are presented. The use of autophagy modulators in combination therapies, in order to overcome drug resistance during cancer treatment, is also discussed as well as the potential challenges and limitations for the use of these novel therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Marta Pérez-Hernández
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Alain Arias
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Department of Integral Adult Dentistry, Research Centre for Dental Sciences (CICO), Universidad de La Frontera, Temuco 4811230, Chile.
- Research Group of Health Sciences, Faculty of Health Sciences, Universidad Adventista de Chile, Chillán 3780000, Chile.
| | - David Martínez-García
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| | - Roberto Quesada
- Department of Chemistry, Universidad de Burgos, 09001 Burgos, Spain.
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08905 Barcelona, Spain.
- Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain.
| |
Collapse
|
12
|
Drugs and Clinical Approaches Targeting the Antiapoptotic Protein: A Review. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1212369. [PMID: 31662966 PMCID: PMC6791192 DOI: 10.1155/2019/1212369] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/29/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
Abstract
B-cell lymphoma 2 (Bcl-2) is a regulator protein involved in apoptosis. In the past few decades, this protein has been demonstrated to have high efficacy in cancer therapy, and several approaches targeting Bcl-2 have been tested clinically (e.g., oblimersen, ABT-737, ABT-263, obatoclax mesylate, and AT-101). This review reports potential Bcl-2 inhibitors according to current information on their underlying mechanism and the results of clinical trials. In addition, the function and mechanisms of other potentially valuable Bcl-2 inhibitors that did not show efficacy in clinical studies are also discussed. This summary of the development of Bcl-2 inhibitors provides worthwhile viewpoints on the use of biomedical approaches in future cancer therapy.
Collapse
|
13
|
Current overview on the clinical update of Bcl-2 anti-apoptotic inhibitors for cancer therapy. Eur J Pharmacol 2019; 862:172655. [PMID: 31494078 DOI: 10.1016/j.ejphar.2019.172655] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/25/2019] [Accepted: 09/04/2019] [Indexed: 12/27/2022]
Abstract
Apoptosis is one of the major mechanisms exhibited in response to cell death and induction of apoptosis in tumour cells signifies a potential target for cancer therapy. Bcl-2 family proteins play a key role in regulation of the apoptotic pathway. Bcl-2 overexpression is commonly associated with various cancers including breast cancer, prostate cancer, B-cell lymphomas and colorectal adenocarcinomas etc. Thus, Bcl-2 is a novel anti-cancer target attracting medicinal chemists across the globe. Research investigations underlying Bcl-2 target have resulted in the generation of small molecule inhibitors, named as 'BH3-mimetics' (Bcl-2 homology 3 mimetics). These drugs display binding to pro-survival Bcl-2 proteins resulting in actuation of apoptosis of cancer cells. The first BH3 mimetics discovered as an outcome of structure-based drug design and Nuclear Magnetic Resonance (NMR)-based screening was ABT-263, an N-acylsulfonamide analogue. Thrombocytopenia a major dose-limiting toxicity, associated with ABT-263 had provoked the invention of a highly selective Bcl-2 inhibitor venetoclax. Several Bcl-2 inhibitors as small molecules are under clinical development and the results indicated that these molecules alone or in combination could be of potential application in cancer therapy. This review summarizes an up to date knowledge of the available small molecule inhibitors, their discovery, synthesis, current clinical and pre-clinical status.
Collapse
|
14
|
Stein MN, Goodin S, Gounder M, Gibbon D, Moss R, Portal D, Lindquist D, Zhao Y, Takebe N, Tan A, Aisner J, Lin H, Ready N, Mehnert JM. A phase I study of AT-101, a BH3 mimetic, in combination with paclitaxel and carboplatin in solid tumors. Invest New Drugs 2019; 38:855-865. [PMID: 31388792 DOI: 10.1007/s10637-019-00807-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/31/2019] [Indexed: 02/05/2023]
Abstract
Background AT-101 is a BH3 mimetic that inhibits the heterodimerization of Bcl-2, Bcl-xL, Bcl-W, and Mcl-1 with pro-apoptotic proteins, thereby lowering the threshold for apoptosis. This phase I trial investigated the MTD of AT-101 in combination with paclitaxel and carboplatin in patients with advanced solid tumors. Methods Patients were treated with AT-101 (40 mg) every 12 h on days 1, 2 and 3 of each cycle combined with varying dose levels (DL) of paclitaxel and carboplatin [DL1: paclitaxel (150 mg/m2) and carboplatin (AUC 5) on day 1 of each cycle; DL2: paclitaxel (175 mg/m2) and carboplatin (AUC 6) on day 1 of each cycle]. Secondary objectives included characterizing toxicity, efficacy, pharmacokinetics, and pharmacodynamics of the combination. Results Twenty-four patients were treated across two DLs with a planned expansion cohort. The most common tumor type was prostate (N = 11). Two patients experienced DLTs: grade 3 abdominal pain at DL1 and grade 3 ALT increase at DL2; however, the MTD was not determined. Moderate hematologic toxicity was observed. One CR was seen in a patient with esophageal cancer and 4 patients achieved PRs (1 NSCLC, 3 prostate). PD studies did not yield statistically significant decreases in Bcl-2 and caspase 3 protein levels, or increased apoptotic activity induced by AT-101. Conclusion The combination of AT-101 at 40 mg every 12 h on days 1, 2 and 3 combined with paclitaxel and carboplatin was safe and tolerable. Based on the modest clinical efficacy seen in this trial, this combination will not be further investigated. Clinical Trial Registration: NCT00891072, CTEP#: 8016.
Collapse
Affiliation(s)
- Mark N Stein
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA. .,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA. .,Herbert Irving Comprehensive Cancer Center, 177 Fort Washington Ave, New York, NY, 10032, USA.
| | - Susan Goodin
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Murugeson Gounder
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Darlene Gibbon
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Rebecca Moss
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Daniella Portal
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Diana Lindquist
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Yujie Zhao
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Naoko Takebe
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Antoinette Tan
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Joseph Aisner
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Hongxia Lin
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Neal Ready
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Janice M Mehnert
- Department of Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, 08903, USA. .,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA. .,Rutgers Cancer Institute of New Jersey, 195 Little Albany St, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
15
|
In vivo and in vitro inhibition of osteosarcoma growth by the pan Bcl-2 inhibitor AT-101. Invest New Drugs 2019; 38:675-689. [DOI: 10.1007/s10637-019-00827-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/24/2019] [Indexed: 01/08/2023]
|
16
|
Adams CM, Clark-Garvey S, Porcu P, Eischen CM. Targeting the Bcl-2 Family in B Cell Lymphoma. Front Oncol 2019; 8:636. [PMID: 30671383 PMCID: PMC6331425 DOI: 10.3389/fonc.2018.00636] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022] Open
Abstract
Although lymphoma is a very heterogeneous group of biologically complex malignancies, tumor cells across all B cell lymphoma subtypes share a set of underlying traits that promote the development and sustain malignant B cells. One of these traits, the ability to evade apoptosis, is essential for lymphoma development. Alterations in the Bcl-2 family of proteins, the key regulators of apoptosis, is a hallmark of B cell lymphoma. Significant efforts have been made over the last 30 years to advance knowledge of the biology, molecular mechanisms, and therapeutic potential of targeting Bcl-2 family members. In this review, we will highlight the complexities of the Bcl-2 family, including our recent discovery of overexpression of the anti-apoptotic Bcl-2 family member Bcl-w in lymphomas, and describe recent advances in the field that include the development of inhibitors of anti-apoptotic Bcl-2 family members for the treatment of B cell lymphomas and their performance in clinical trials.
Collapse
Affiliation(s)
- Clare M Adams
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sean Clark-Garvey
- Internal Medicine Residency Program, Department of Internal Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Pierluigi Porcu
- Division of Hematologic Malignancies and Hematopoietic Stem Cell Transplantation, Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Christine M Eischen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
17
|
Yu Y, Cui J. Present and future of cancer immunotherapy: A tumor microenvironmental perspective. Oncol Lett 2018; 16:4105-4113. [PMID: 30214551 DOI: 10.3892/ol.2018.9219] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 06/26/2018] [Indexed: 12/14/2022] Open
Abstract
Modulation of the tumor microenvironment is becoming an increasingly popular research topic in the field of immunotherapy, and studies regarding immune checkpoint blockades and cancer immunotherapy have pushed cancer immunotherapy to a climax. Simultaneously, the manipulation of the immune regulatory pathway can create an effective immunotherapy strategy; however, the tumor microenvironment serves an important role in suppressing the antitumor immunity by its significant heterogeneity. A number of patients with cancer do not have a good response to monotherapy approaches; therefore, combination strategies are required to achieve optimal therapeutic benefits. Targeting the tumor microenvironment may provide a novel strategy for immunotherapy, break down the resistance of conventional cancer therapy and produce the foundation for personalized precision medicine. The present review summarized the research regarding cancer immunotherapy from the perspective of how the tumor microenvironment affects the immune response, with the aim of proposing a novel strategy for cancer immunotherapy and combination therapy.
Collapse
Affiliation(s)
- Yu Yu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
18
|
Adamski V, Schmitt C, Ceynowa F, Adelung R, Lucius R, Synowitz M, Hattermann K, Held-Feindt J. Effects of sequentially applied single and combined temozolomide, hydroxychloroquine and AT101 treatment in a long-term stimulation glioblastoma in vitro model. J Cancer Res Clin Oncol 2018; 144:1475-1485. [PMID: 29858681 DOI: 10.1007/s00432-018-2680-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/27/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is a poorly curable disease due to its heterogeneity that enables single cells to survive treatment regimen and initiate tumor regrowth. Although some progress in therapy has been achieved in the last years, the efficient treatment of GBMs is still a clinical challenge. Besides the standard therapeutic drug temozolomide (TMZ), quinoline-based antimalarial drugs such as hydroxychloroquine (HCQ) and BH3 mimetics such as AT101 were considered as possible drugs for GBM therapy. METHODS We investigated the effects of sequentially applied single and combined TMZ, HCQ and AT101 treatments in a long-term stimulation GBM in vitro model. We performed all investigations in parallel in human astrocytes and two differentially TMZ-responsive human GBM cell lines and adjusted used drug concentrations to known liquor/plasma concentrations in patients. We determined amounts of dead cells and still remaining growth rates and depicted our results in a heatmap-like summary to visualize which sequential long-term treatment schedule seemed to be most promising. RESULTS We showed that sequential stimulations yielded higher cytotoxicity and better tumor growth control in comparison to single TMZ treatment. This was especially the case for the sequences TMZ/HCQ and TMZ + AT101/AT101 which was as effective as the non-sequential combination TMZ + AT101. Importantly, those affected both less and more TMZ-responsive glioma cell lines, whilst being less harmful for astrocytes in comparison to single TMZ treatment. CONCLUSIONS Sequential treatment with mechanistically different acting drugs might be an option to reduce side effects in long-term treatment, for example in local administration approaches.
Collapse
Affiliation(s)
- Vivian Adamski
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str.3, Building 41, 24105, Kiel, Germany
| | | | - Florian Ceynowa
- Institute for Materials Science, University of Kiel, 24143, Kiel, Germany
| | - Rainer Adelung
- Institute for Materials Science, University of Kiel, 24143, Kiel, Germany
| | - Ralph Lucius
- Department of Anatomy, University of Kiel, 24118, Kiel, Germany
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str.3, Building 41, 24105, Kiel, Germany
| | | | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str.3, Building 41, 24105, Kiel, Germany.
| |
Collapse
|
19
|
Prevention and treatment of bleomycin-induced pulmonary fibrosis with the lactate dehydrogenase inhibitor gossypol. PLoS One 2018; 13:e0197936. [PMID: 29795645 PMCID: PMC5967738 DOI: 10.1371/journal.pone.0197936] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/31/2018] [Indexed: 11/19/2022] Open
Abstract
Pulmonary fibrosis is a chronic and irreversible scarring disease in the lung with poor prognosis. Few therapies are available; therefore it is critical to identify new therapeutic targets. Our lab has previously identified the enzyme lactate dehydrogenase-A (LDHA) as a potential therapeutic target in pulmonary fibrosis. We found increases in LDHA protein and its metabolic product, lactate, in patients with idiopathic pulmonary fibrosis (IPF). Importantly, we described lactate as a novel pro-fibrotic mediator by acidifying the extracellular space, and activating latent transforming growth factor beta (TGF-β1) in a pH-dependent manner. We propose a pro-fibrotic feed-forward loop by which LDHA produces lactate, lactate decreases pH in the extracellular space and activates TGF-β1 which can further perpetuate fibrotic signaling. Our previous work also demonstrates that the LDHA inhibitor gossypol inhibits TGF-β1-induced myofibroblast differentiation and collagen production in vitro. Here, we employed a mouse model of bleomycin-induced pulmonary fibrosis to test whether gossypol inhibits pulmonary fibrosis in vivo. We found that gossypol dose-dependently inhibits bleomycin-induced collagen accumulation and TGF-β1 activation in mouse lungs when treatment is started on the same day as bleomycin administration. Importantly, gossypol was also effective at treating collagen accumulation when delayed 7 days following bleomycin. Our results demonstrate that inhibition of LDHA with the inhibitor gossypol is effective at both preventing and treating bleomycin-induced pulmonary fibrosis, and suggests that LDHA may be a potential therapeutic target for pulmonary fibrosis.
Collapse
|
20
|
Yang EJ, An JH, Son YK, Yeo JH, Song KS. The Cytotoxic Constituents ofBetula platyphyllaand their Effects on Human Lung A549 Cancer Cells. ACTA ACUST UNITED AC 2018. [DOI: 10.20307/nps.2018.24.4.219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Eun-Ju Yang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ju-Hee An
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Youn Kyoung Son
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Joo-Hong Yeo
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Kyung-Sik Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
21
|
Natural compounds and combination therapy in colorectal cancer treatment. Eur J Med Chem 2018; 144:582-594. [DOI: 10.1016/j.ejmech.2017.12.039] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022]
|
22
|
Recent advances in gossypol derivatives and analogs: a chemistry and biology view. Future Med Chem 2017; 9:1243-1275. [PMID: 28722469 DOI: 10.4155/fmc-2017-0046] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gossypol as a natural occurring polyphenol has been studied in a wide range of therapeutic contexts for a long time. The chemical modifications on gossypol were limited due to the unique chemical properties of polyphenols. The design and synthesis of gossypol derivatives and the exploration of their biological activities are the interest of the synthetic chemists, medicinal chemists and pharmacologists. Thus, the progress of diverse gossypol derivatives and analogs' synthesis, biological activities, mechanism elucidation and drug discovery based on gossypol scaffold is summarized.
Collapse
|
23
|
Benvenuto M, Mattera R, Masuelli L, Taffera G, Andracchio O, Tresoldi I, Lido P, Giganti MG, Godos J, Modesti A, Bei R. (±)-Gossypol induces apoptosis and autophagy in head and neck carcinoma cell lines and inhibits the growth of transplanted salivary gland cancer cells in BALB/c mice. Int J Food Sci Nutr 2016; 68:298-312. [PMID: 27670669 DOI: 10.1080/09637486.2016.1236077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Racemic Gossypol [(±)-GOS], composed of both (-)-GOS and (+)-GOS, is a small BH3-mimetic polyphenol derived from cotton seeds. (±)-GOS has been employed and well tolerated by cancer patients. Head and neck carcinoma (HNC) represents one of the most fatal cancers worldwide, and a significant proportion of HNC expresses high levels of antiapoptotic Bcl-2 proteins. In this study, we demonstrate that (±)-GOS inhibits cell proliferation and induces apoptosis and autophagy of human pharynx, tongue, and salivary gland cancer cell lines and of mouse salivary gland cancer cells (SALTO). (±)-GOS was able to: (a) decrease the ErbB2 protein expression; (b) inhibit the phosphorylation of ERK1/2 and AKT; (c) stimulate p38 and JNK1/2 protein phosphorylation. (±)-GOS administration was safe in BALB/c mice and it reduced the growth of transplanted SALTO cells in vivo and prolonged mice median survival. Our results suggest the potential role of (±)-GOS as an antitumor agent in HNC patients.
Collapse
Affiliation(s)
- Monica Benvenuto
- a Department of Clinical Sciences and Translational Medicine, Faculty of Medicine , University of Rome "Tor Vergata" , Rome , Italy
| | - Rosanna Mattera
- a Department of Clinical Sciences and Translational Medicine, Faculty of Medicine , University of Rome "Tor Vergata" , Rome , Italy
| | - Laura Masuelli
- b Department of Experimental Medicine , "Sapienza Università di Roma" , Rome , Italy
| | - Gloria Taffera
- a Department of Clinical Sciences and Translational Medicine, Faculty of Medicine , University of Rome "Tor Vergata" , Rome , Italy
| | - Orlando Andracchio
- a Department of Clinical Sciences and Translational Medicine, Faculty of Medicine , University of Rome "Tor Vergata" , Rome , Italy
| | - Ilaria Tresoldi
- a Department of Clinical Sciences and Translational Medicine, Faculty of Medicine , University of Rome "Tor Vergata" , Rome , Italy
| | - Paolo Lido
- c Internal Medicine Residency Program , University of Rome "Tor Vergata" , Rome , Italy
| | - Maria Gabriella Giganti
- a Department of Clinical Sciences and Translational Medicine, Faculty of Medicine , University of Rome "Tor Vergata" , Rome , Italy
| | - Justyna Godos
- d Department of Biomedical and Biotechnological Sciences , University of Catania , Catania , Italy
| | - Andrea Modesti
- a Department of Clinical Sciences and Translational Medicine, Faculty of Medicine , University of Rome "Tor Vergata" , Rome , Italy
| | - Roberto Bei
- a Department of Clinical Sciences and Translational Medicine, Faculty of Medicine , University of Rome "Tor Vergata" , Rome , Italy
| |
Collapse
|
24
|
A phase II trial of the BCL-2 homolog domain 3 mimetic AT-101 in combination with docetaxel for recurrent, locally advanced, or metastatic head and neck cancer. Invest New Drugs 2016; 34:481-9. [PMID: 27225873 DOI: 10.1007/s10637-016-0364-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/19/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND AT-101 is a BCL-2 Homolog domain 3 mimetic previously demonstrated to have tumoricidal effects in advanced solid organ malignancies. Given the evidence of activity in xenograft models, treatment with AT-101 in combination with docetaxel is a therapeutic doublet of interest in metastatic head and neck squamous cell carcinoma. PATIENTS AND METHODS Patients included in this trial had unresectable, recurrent, or distantly metastatic head and neck squamous cell carcinoma (R/M HNSCC) not amenable to curative radiation or surgery. This was an open label randomized, phase II trial in which patients were administered AT-101 in addition to docetaxel. The three treatment arms were docetaxel, docetaxel plus pulse dose AT-101, and docetaxel plus metronomic dose AT-101. The primary endpoint of this trial was overall response rate. RESULTS Thirty-five patients were registered and 32 were evaluable for treatment response. Doublet therapy with AT-101 and docetaxel was well tolerated with only 2 patients discontinuing therapy due to treatment related toxicities. The overall response rate was 11 % (4 partial responses) with a clinical benefit rate of 74 %. Median progression free survival was 4.3 months (range: 0.7-13.7) and overall survival was 5.5 months (range: 0.4-24). No significant differences were noted between dosing strategies. CONCLUSION Although met with a favorable toxicity profile, the addition of AT-101 to docetaxel in R/M HNSCC does not appear to demonstrate evidence of efficacy.
Collapse
|
25
|
Schneider BJ, Kalemkerian GP. Personalized Therapy of Small Cell Lung Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 890:149-74. [PMID: 26703804 DOI: 10.1007/978-3-319-24932-2_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Small cell lung cancer (SCLC) is an aggressive, poorly differentiated neuroendocrine carcinoma with distinct clinical, pathological and molecular characteristics. Despite robust responses to initial chemotherapy and radiation, the prognosis of patients with SCLC remains poor with an overall 5-year survival rate of less than 10 %. Despite the fact that numerous molecularly targeted approaches have thus far failed to demonstrate clinical utility in SCLC, further advances will rely on better definition of the biological pathways that drive survival, proliferation and metastasis. Recent next-generation, molecular profiling studies have identified many new therapeutic targets in SCLC, as well as extreme genomic instability which explains the high degree of resistance. A wide variety of anti-angiogenic agents, growth factor inhibitors, pro-apoptotic agents, and epigenetic modulators have been evaluated in SCLC and many studies of these strategies are on-going. Perhaps the most promising approaches involve agents targeting cancer stem cell pathways and immunomodulatory drugs that interfere with the PD1 and CTLA-4 pathways. SCLC offers many barriers to the development of successful therapy, including limited tumor samples, inadequate preclinical models, high mutational burden, and aggressive tumor growth which impairs functional status and hampers enrollment on clinical trials.
Collapse
Affiliation(s)
- Bryan J Schneider
- Division of Hematology/Oncology, University of Michigan, C411 Med Inn-SPC 5848, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109-5848, USA.
| | - Gregory P Kalemkerian
- Division of Hematology/Oncology, University of Michigan, C350 Med Inn-SPC 5848, 1500 E. Medical Center Dr., Ann Arbor, MI, 48109-5848, USA.
| |
Collapse
|
26
|
Kottmann RM, Trawick E, Judge JL, Wahl LA, Epa AP, Owens KM, Thatcher TH, Phipps RP, Sime PJ. Pharmacologic inhibition of lactate production prevents myofibroblast differentiation. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1305-12. [PMID: 26408551 DOI: 10.1152/ajplung.00058.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 09/22/2015] [Indexed: 11/22/2022] Open
Abstract
Myofibroblasts are one of the primary cell types responsible for the accumulation of extracellular matrix in fibrosing diseases, and targeting myofibroblast differentiation is an important therapeutic strategy for the treatment of pulmonary fibrosis. Transforming growth factor-β (TGF-β) has been shown to be an important inducer of myofibroblast differentiation. We previously demonstrated that lactate dehydrogenase and its metabolic product lactic acid are important mediators of myofibroblast differentiation, via acid-induced activation of latent TGF-β. Here we explore whether pharmacologic inhibition of LDH activity can prevent TGF-β-induced myofibroblast differentiation. Primary human lung fibroblasts from healthy patients and those with pulmonary fibrosis were treated with TGF-β and or gossypol, an LDH inhibitor. Protein and RNA were analyzed for markers of myofibroblast differentiation and extracellular matrix generation. Gossypol inhibited TGF-β-induced expression of the myofibroblast marker α-smooth muscle actin (α-SMA) in a dose-dependent manner in both healthy and fibrotic human lung fibroblasts. Gossypol also inhibited expression of collagen 1, collagen 3, and fibronectin. Gossypol inhibited LDH activity, the generation of extracellular lactic acid, and the rate of extracellular acidification in a dose-dependent manner. Furthermore, gossypol inhibited TGF-β bioactivity in a dose-dependent manner. Concurrent treatment with an LDH siRNA increased the ability of gossypol to inhibit TGF-β-induced myofibroblast differentiation. Gossypol inhibits TGF-β-induced myofibroblast differentiation through inhibition of LDH, inhibition of extracellular accumulation of lactic acid, and inhibition of TGF-β bioactivity. These data support the hypothesis that pharmacologic inhibition of LDH may play an important role in the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Robert Matthew Kottmann
- University of Rochester Department of Medicine, Rochester, New York; University of Rochester Lung Biology and Disease Program, Rochester, New York
| | - Emma Trawick
- University of Rochester Department of Medicine, Rochester, New York; University of Rochester Lung Biology and Disease Program, Rochester, New York
| | - Jennifer L Judge
- University of Rochester Department of Medicine, Rochester, New York; University of Rochester Lung Biology and Disease Program, Rochester, New York
| | - Lindsay A Wahl
- University of Rochester Department of Medicine, Rochester, New York
| | - Amali P Epa
- University of Rochester Department of Medicine, Rochester, New York; University of Rochester Lung Biology and Disease Program, Rochester, New York
| | - Kristina M Owens
- University of Rochester Department of Medicine, Rochester, New York; University of Rochester Lung Biology and Disease Program, Rochester, New York
| | | | - Richard P Phipps
- University of Rochester Department of Medicine, Rochester, New York; University of Rochester Department of Environmental Medicine, Rochester, New York; and University of Rochester Lung Biology and Disease Program, Rochester, New York
| | - Patricia J Sime
- University of Rochester Department of Medicine, Rochester, New York; University of Rochester Department of Environmental Medicine, Rochester, New York; and University of Rochester Lung Biology and Disease Program, Rochester, New York
| |
Collapse
|
27
|
Stein MN, Hussain M, Stadler WM, Liu G, Tereshchenko IV, Goodin S, Jeyamohan C, Kaufman HL, Mehnert J, DiPaola RS. A Phase II Study of AT-101 to Overcome Bcl-2--Mediated Resistance to Androgen Deprivation Therapy in Patients With Newly Diagnosed Castration-Sensitive Metastatic Prostate Cancer. Clin Genitourin Cancer 2015; 14:22-7. [PMID: 26476589 DOI: 10.1016/j.clgc.2015.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/11/2015] [Indexed: 12/22/2022]
Abstract
UNLABELLED In a phase II multicenter study, men with castration sensitive metastatic prostate cancer were treated with AT-101, a small molecule Bcl-2 inhibitor, and androgen deprivation therapy. At the end of 7 cycles of therapy in 55 patients, an undetectable PSA was achieved in 31%. However, the combination did not meet the pre-specified level of activity for further development. BACKGROUND We conducted a phase II study in men with castration-sensitive metastatic prostate cancer to test the hypothesis that AT-101, a small molecule Bcl-2 inhibitor, has clinical activity in patients initiating androgen deprivation therapy (ADT) for metastatic prostate cancer. MATERIALS AND METHODS Patients with metastatic prostate cancer scheduled to start, or who had recently (within 6 weeks) initiated, ADT were enrolled. ADT with a luteinizing hormone-releasing hormone agonist and bicalutamide was started 6 weeks before initiation of oral AT-101, 20 mg/day for 21 days of a 28-day cycle. The primary endpoint of the study was the percentage of patients with an undetectable prostate-specific antigen (PSA) level (≤ 0.2 ng/mL) after 7.5 months (1.5 months of ADT alone plus 6 months of combined ADT and AT-101). To assess for an association between chromodomain helicase DNA binding protein 1 (CHD1) and drug sensitivity, fluorescence in situ hybridization with confocal microscopy was assessed in a subgroup of patients. RESULTS A total of 55 patients were enrolled, with median age of 61 years and a median PSA level of 27.6 ng/dL. Of the 55 patients, 72% had a Gleason score ≥ 8. Three patients had visceral metastases, and the remaining patients had bone or nodal metastasis. An undetectable PSA level was achieved in 31% of the patients. Of the 31 patients, 12 experienced serious adverse events, 7 of which were considered related to study therapy. Most of the related adverse events were gastrointestinal and nervous system disorders. CHD1 assessment was feasible, with a nonsignificant association with therapeutic sensitivity in a small number of patients. CONCLUSION The combination of ADT and AT-101 did not meet the prespecified level of activity for further development of this combination.
Collapse
Affiliation(s)
- Mark N Stein
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | | | | | - Glenn Liu
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI
| | | | - Susan Goodin
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | | | | | - Janice Mehnert
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | | |
Collapse
|
28
|
Opferman JT. Attacking cancer's Achilles heel: antagonism of anti-apoptotic BCL-2 family members. FEBS J 2015; 283:2661-75. [PMID: 26293580 DOI: 10.1111/febs.13472] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/04/2015] [Accepted: 08/14/2015] [Indexed: 12/23/2022]
Abstract
Malignant cells routinely violate cellular checkpoints that should initiate cell death in normal cells by triggering pro-apoptotic members of the BCL-2 family of proteins. To escape such death inducing signals, cancer cells often select for upregulation of anti-apoptotic BCL-2 family members including BCL-2, BCL-XL , BFL-1, BCL-W and MCL-1. These family members prevent death by sequestering pro-apoptotic molecules. To counter this resistance mechanism, small molecule inhibitors of anti-apoptotic BCL-2 family members have been under development. These molecules have shown promise in pre-clinical and clinical testing to overcome apoptotic resistance, prompting cancer cells to undergo apoptosis. Alternatively, other strategies have taken advantage of the normal regulatory machinery controlling anti-apoptotic molecules and have used inhibitors of signaling pathways to down-modulate the expression of anti-apoptotic molecules, thus tilting the balance in cancer cells to cell death. This review explores recent developments and strategies aimed at antagonizing anti-apoptotic BCL-2 family member action to promote the induction of cell death in cancer therapy.
Collapse
Affiliation(s)
- Joseph T Opferman
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
29
|
Zerp SF, Stoter TR, Hoebers FJP, van den Brekel MWM, Dubbelman R, Kuipers GK, Lafleur MVM, Slotman BJ, Verheij M. Targeting anti-apoptotic Bcl-2 by AT-101 to increase radiation efficacy: data from in vitro and clinical pharmacokinetic studies in head and neck cancer. Radiat Oncol 2015. [PMID: 26223311 PMCID: PMC4520130 DOI: 10.1186/s13014-015-0474-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pro-survival Bcl-2 family members can promote cancer development and contribute to treatment resistance. Head and neck squamous cell carcinoma (HNSCC) is frequently characterized by overexpression of anti-apoptotic Bcl-2 family members. Increased levels of these anti-apoptotic proteins have been associated with radio- and chemoresistance and poor clinical outcome. Inhibition of anti-apoptotic Bcl-2 family members therefore represents an appealing strategy to overcome resistance to anti-cancer therapies. The aim of this study was to evaluate combined effects of radiation and the pan-Bcl-2 inhibitor AT-101 in HNSCC in vitro. In addition, we determined human plasma levels of AT-101 obtained from a phase I/II trial, and compared these with the effective in vitro concentrations to substantiate therapeutic opportunities. METHODS We examined the effect of AT-101, radiation and the combination on apoptosis induction and clonogenic survival in two HNSCC cell lines that express the target proteins. Apoptosis was assessed by bis-benzimide staining to detect morphological nuclear changes and/or by propidium iodide staining and flow-cytometry analysis to quantify sub-diploid apoptotic nuclei. The type of interaction between AT-101 and radiation was evaluated by calculating the Combination Index (CI) and by performing isobolographic analysis. For the pharmacokinetic analysis, plasma AT-101 levels were measured by HPLC in blood samples collected from patients enrolled in our clinical phase I/II study. These patients with locally advanced HNSCC were treated with standard cisplatin-based chemoradiotherapy and received dose-escalating oral AT-101 in a 2-weeks daily schedule every 3 weeks. RESULTS In vitro results showed that AT-101 enhances radiation-induced apoptosis with CI's below 1.0, indicating synergy. This effect was sequence-dependent. Clonogenic survival assays demonstrated a radiosensitizing effect with a DEF37 of 1.3 at sub-apoptotic concentrations of AT-101. Pharmacokinetic analysis of patient blood samples taken between 30 min and 24 h after intake of AT-101 showed a dose-dependent increase in plasma concentration with peak levels up to 300-700 ng/ml between 1.5 and 2.5 h after intake. CONCLUSION AT-101 is a competent enhancer of radiation-induced apoptosis in HNSCC in vitro. In addition, in vitro radiosensitization was observed at clinically attainable plasma levels. These finding support further evaluation of the combination of AT-101 with radiation in Bcl-2-overexpressing tumors.
Collapse
Affiliation(s)
- Shuraila F Zerp
- Department of Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - T Rianne Stoter
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Frank J P Hoebers
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Michiel W M van den Brekel
- Department of Head and Neck Surgery and Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ria Dubbelman
- Department of Radiotherapy, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gitta K Kuipers
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - M Vincent M Lafleur
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ben J Slotman
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Marcel Verheij
- Department of Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, The Netherlands. .,Department of Radiotherapy, The Netherlands Cancer Institute, Amsterdam, The Netherlands. .,The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Wang J, Peng Y, Liu Y, Yang J, Huang M, Tan W. AT-101 inhibits hedgehog pathway activity and cancer growth. Cancer Chemother Pharmacol 2015; 76:461-9. [PMID: 26113054 DOI: 10.1007/s00280-015-2812-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023]
Abstract
PURPOSE AT-101 is considered as a putative pan-inhibitor of anti-apoptotic Bcl-2 family protein members acting as a BH3 mimetic. It is currently being investigated in phase I/II clinical trial in various types of cancers. In this study, using a series of in vitro and in vivo assays, we evaluated the effect of AT-101 on the hedgehog (Hh) signaling pathway activity and its anticancer ability. RESULTS We found that AT-101 obviously blocked the Hh signaling pathway activity in response to ShhN-conditioned medium (ShhN CM). This inhibitory effect, to some extent, displayed selectivity against Hh signaling pathway. Furthermore, we identified that AT-101 potentially acted on smoothened (Smo) by sharing the same binding site with cyclopamine, a classical Hh signaling pathway inhibitor. Taking advantage of the patch+/-; p53-/- mouse medulloblastoma model, we observed that AT-101 significantly suppressed the Hh-driven medulloblastoma growth in vitro and in vivo. CONCLUSIONS This study demonstrates that AT-101 significantly and selectively inhibits Hh pathway activity by potentially targeting Smo and consequently suppresses the growth of Hh-driven cancer. Therefore, this study reveals a novel molecular mechanism responsible for the anticancer action of AT-101 and contributes to the further development of AT-101 as an anticancer drug.
Collapse
Affiliation(s)
- Juan Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | | | | | | | | | | |
Collapse
|
31
|
Ren T, Shan J, Li M, Qing Y, Qian C, Wang G, Li Q, Lu G, Li C, Peng Y, Luo H, Zhang S, Yang Y, Cheng Y, Wang D, Zhou SF. Small-molecule BH3 mimetic and pan-Bcl-2 inhibitor AT-101 enhances the antitumor efficacy of cisplatin through inhibition of APE1 repair and redox activity in non-small-cell lung cancer. Drug Des Devel Ther 2015; 9:2887-910. [PMID: 26089640 PMCID: PMC4467754 DOI: 10.2147/dddt.s82724] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AT-101 is a BH3 mimetic and pan-Bcl-2 inhibitor that has shown potent anticancer activity in non-small-cell lung cancer (NSCLC) in murine models, but failed to show clinical efficacy when used in combination with docetaxel in NSCLC patients. Our recent study has demonstrated that AT-101 enhanced the antitumor effect of cisplatin (CDDP) in a murine model of NSCLC via inhibition of the interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway. This study explored the underlying mechanisms for the enhanced anticancer activity of CDDP by AT-101. Our results show that, when compared with monotherapy, AT-101 significantly enhanced the inhibitory effects of CDDP on proliferation and migration of A549 cells and on tube formation and migration in human umbilical vein endothelial cells. AT-101 promoted the proapoptotic activity of CDDP in A549 cells. AT-101 also enhanced the inhibitory effect of CDDP on DNA repair and redox activities of apurinic/apyrimidinic endonuclease 1 (APE1) in A549 cells. In tumor tissues from nude mice treated with AT-101 plus CDDP or monotherapy, the combination therapy resulted in greater inhibition of angiogenesis and tumor cell proliferation than the monotherapy. These results suggest that AT-101 can enhance the antitumor activity of CDDP in NSCLC via inhibition of APE1 DNA repair and redox activities and by angiogenesis and induction of apoptosis, but other mechanisms cannot be excluded. We are now conducting a Phase II trial to examine the clinical efficacy and safety profile of combined use of AT-101 plus CDDP in advanced NSCLC patients.
Collapse
Affiliation(s)
- Tao Ren
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
- Department of Oncology, The Affiliated Hospital, North Sichuan Medical College, Sichuan, People’s Republic of China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Jinlu Shan
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Mengxia Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yi Qing
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Chengyuan Qian
- Department of Oncology, The 97 Hospital of PLA, Jiangsu, People’s Republic of China
| | - Guangjie Wang
- Cancer Diagnosis and Treatment Center, Military District General Hospital of Chengdu Military Region, Sichuan, People’s Republic of China
| | - Qing Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Guoshou Lu
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Chongyi Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yu Peng
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Hao Luo
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Shiheng Zhang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yuxing Yang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yi Cheng
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
32
|
Huang J, Fairbrother W, Reed JC. Therapeutic targeting of Bcl-2 family for treatment of B-cell malignancies. Expert Rev Hematol 2015; 8:283-97. [PMID: 25912824 DOI: 10.1586/17474086.2015.1026321] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The BCL2 gene was discovered nearly 30 years ago, launching a field of scientific inquiry and medical research with the potential for delivering transformational therapeutics. Revealed by its involvement in chromosomal translocations of B-cell lymphomas, BCL2 is the founding member of a family of cell survival genes that endow cells with long life spans and provide protection from a myriad of cellular stresses, including chemotherapy. Anti-apoptotic Bcl-2 family members are commonly overexpressed in a variety of human malignancies through a diversity of genetic and epigenetic mechanisms. Here, we review therapeutic strategies for targeting Bcl-2 family members with an emphasis on B-cell malignancies, providing insights into their current promise and remaining challenges.
Collapse
Affiliation(s)
- Jane Huang
- Early Discovery Biochemistry Department, Genentech, South San Francisco, CA, USA
| | | | | |
Collapse
|
33
|
The role of BH3-mimetic drugs in the treatment of pediatric hepatoblastoma. Int J Mol Sci 2015; 16:4190-208. [PMID: 25690034 PMCID: PMC4346952 DOI: 10.3390/ijms16024190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/01/2015] [Accepted: 02/09/2015] [Indexed: 12/20/2022] Open
Abstract
Pediatric hepatoblastoma (HB) is commonly treated by neoadjuvant chemotherapy and surgical tumor resection according to international multicenter trial protocols. Complete tumor resection is essential and survival rates up to 95% have now been achieved in those tumors classified as standard-risk HB. Drug resistance and occurrence of metastases remain the major challenges in the treatment of HB, especially in high-risk tumors. These conditions urgently require the development of alternative therapeutic strategies. One of those alternatives is the modulation of apoptosis in HB cells. HBs regularly overexpress anti-apoptotic proteins of the Bcl-family in comparison to healthy liver tissue. This fact may contribute to the development of chemoresistance of HB cells. Synthetic small inhibitory molecules with BH3-mimetic effects, such as ABT-737 and obatoclax, enhance the susceptibility of tumor cells to different cytotoxic drugs and thereby affect initiator proteins of the apoptosis cascade via the intrinsic pathway. Besides additive effects on HB cell viability when used in combination with cytotoxic drugs, BH3-mimetics also play a role in preventing metastasation by reducing adhesion and inhibiting cell migration abilities. Presumably, including additive BH3-mimetic drugs into existing therapeutic regimens in HB patients might allow dose reduction of established cytotoxic drugs and thereby associated immanent side effects, while maintaining the antitumor activity. Furthermore, reduction of tumor growth and inhibition of tumor cell dissemination may facilitate complete surgical tumor resection, which is mandatory in this tumor type resulting in improved survival rates in high-risk HB. Currently, there are phase I and phase II clinical trials in several cancer entities using this potential target. This paper reviews the available literature regarding the use of BH3-mimetic drugs as single agents or in combination with chemotherapy in various malignancies and focuses on results in HB cells.
Collapse
|
34
|
Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 2015; 14:111-29. [PMID: 25614221 DOI: 10.1038/nrd4510] [Citation(s) in RCA: 1540] [Impact Index Per Article: 171.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Natural products have been a rich source of compounds for drug discovery. However, their use has diminished in the past two decades, in part because of technical barriers to screening natural products in high-throughput assays against molecular targets. Here, we review strategies for natural product screening that harness the recent technical advances that have reduced these barriers. We also assess the use of genomic and metabolomic approaches to augment traditional methods of studying natural products, and highlight recent examples of natural products in antimicrobial drug discovery and as inhibitors of protein-protein interactions. The growing appreciation of functional assays and phenotypic screens may further contribute to a revival of interest in natural products for drug discovery.
Collapse
Affiliation(s)
- Alan L Harvey
- 1] Research and Innovation Support, Dublin City University, Dublin 9, Ireland. [2] Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0NR, UK
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0NR, UK
| | - Ronald J Quinn
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| |
Collapse
|
35
|
Ren T, Shan J, Qing Y, Qian C, Li Q, Lu G, Li M, Li C, Peng Y, Luo H, Zhang S, Zhang W, Wang D, Zhou SF. Sequential treatment with AT-101 enhances cisplatin chemosensitivity in human non-small cell lung cancer cells through inhibition of apurinic/apyrimidinic endonuclease 1-activated IL-6/STAT3 signaling pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:2517-29. [PMID: 25548514 PMCID: PMC4271790 DOI: 10.2147/dddt.s71432] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AT-101, known as R-(–)-gossypol, is a potent anticancer agent, but its chemosensitizing effects remain elusive. The present study aimed to examine whether AT-101 could increase the sensitivity of non-small cell lung cancer A549 cells to cisplatin (CDDP) and the underlying mechanisms. We evaluated the efficacy of the sequential treatment with AT-101 and CDDP using both in vitro and in vivo models. Our results showed that as compared to AT-101 or CDDP monotherapy, or AT-101 plus CDDP concurrent treatment, the sequential treatment significantly inhibited cell proliferation and migration and induced tumor cell death. Moreover, the efficacy of the sequential treatment was also confirmed in a mouse A549 xenograft model. Our study revealed that AT-101 inhibited the reduced status of apurinic/apyrimidinic endonuclease 1 (APE1) and attenuated APE1-mediated IL-6/STAT3 signaling activation by decreasing IL-6 protein expression; suppressing the STAT3–DNA binding; and reducing the expression of the downstream antiapoptotic proteins Bcl-2 and Bcl-xL. In conclusion, AT-101 enhances the sensitivity of A549 cells to CDDP in vitro and in vivo through the inhibition of APE1-mediated IL-6/STAT3 signaling activation, providing a rationale for the combined use of AT-101 and CDDP in non-small cell lung cancer chemotherapy.
Collapse
Affiliation(s)
- Tao Ren
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China ; Oncology Department, The Affiliated Hospital, North Sichuan Medical College, Nanchong, People's Republic of China
| | - Jinlu Shan
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Yi Qing
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Chengyuan Qian
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Qing Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Guoshou Lu
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Mengxia Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Chongyi Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Yu Peng
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Hao Luo
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Shiheng Zhang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Weiwei Zhang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
36
|
Wen X, Buckley B, McCandlish E, Goedken MJ, Syed S, Pelis R, Manautou JE, Aleksunes LM. Transgenic expression of the human MRP2 transporter reduces cisplatin accumulation and nephrotoxicity in Mrp2-null mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1299-308. [PMID: 24641901 DOI: 10.1016/j.ajpath.2014.01.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/06/2014] [Accepted: 01/13/2014] [Indexed: 12/22/2022]
Abstract
The chemotherapeutic drug cisplatin is actively transported into proximal tubules, leading to acute renal injury. Previous studies suggest that the multidrug resistance-associated protein 2 (Mrp2) transporter may efflux cisplatin conjugates from cells. We sought to determine whether the absence of Mrp2 alters the accumulation and toxicity of platinum in the kidneys of mice and whether transgenic expression of the human MRP2 gene could protect against cisplatin injury in vivo. Plasma, kidneys, and livers from vehicle- and cisplatin-treated wild-type and Mrp2-null mice were collected for quantification of platinum and toxicity. By 24 hours, twofold higher concentrations of platinum were detected in the kidneys and livers of Mrp2-null mice compared with wild types. Enhanced platinum concentrations in Mrp2-null mice were observed in DNA and cytosolic fractions of the kidneys. Four days after cisplatin treatment, more extensive proximal tubule injury was observed in Mrp2-null mice compared with wild-type mice. Kidneys from naive Mrp2-null mice had elevated glutathione S-transferase mRNA levels, which could increase the formation of cisplatin-glutathione conjugates that may be metabolized to toxic thiol intermediates. Transgenic expression of the human MRP2 gene in Mrp2-null mice reduced the accumulation and nephrotoxicity of cisplatin to levels observed in wild-type mice. These data suggest that deficiency in Mrp2 lowers platinum excretion and increases susceptibility to kidney injury, which can be rescued by the human MRP2 ortholog.
Collapse
Affiliation(s)
- Xia Wen
- Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Elizabeth McCandlish
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Michael J Goedken
- Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Samira Syed
- Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ryan Pelis
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey; Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
| |
Collapse
|