1
|
Li J, Qin C, Wu Y, Cheng S, Wang Y, Chen H, Chen F, Chen B, Li J. Targeting LRRC41 as a potential therapeutic approach for hepatocellular carcinoma. Front Mol Biosci 2023; 10:1300294. [PMID: 38192337 PMCID: PMC10773795 DOI: 10.3389/fmolb.2023.1300294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction: Hepatocellular carcinoma (HCC) is the most common primary liver cancer, characterized by high mortality rate. In clinical practice, several makers of liver cancer, such as VEGFR1, FGFR1 and PDGFRα, were identified and their potentials as a therapeutic target were explored. However, the unsatisfied treatment results emphasized the needs of new therapeutic targets. Methods: 112 HCC patients samples were obtained to evaluate the expression of LRRC41, SOX9, CD44, and EPCAM in HCC, combined with prognosis analysis. A DEN-induced HCC rat model was constructed to verify the expression of LRRC41 and SOX9 in HCC and lung metastasis tissues. Immune score evaluation was analysized by bioinformatics methods. Network pharmacology was performed to explored the potential FDA-approved drugs targeting LRRC41. Results: Through analysis of the Timer database and tissue micro-array, we confirmed that LRRC41 was over-expressed in HCC and exhibited a significant positive correlation with recurrence and metastasis. Immunohistochemistry staining of human HCC tissue samples revealed significant upregulation of LRRC41, SOX9, CD44, and EPCAM, with LRRC41 showing a positive correlation with SOX9, CD44, and EPCAM expression. UALCAN database analysis indicated that LRRC41 and SOX9 contribute to poor prognosis whereas CD44 and EPCAM did not demonstrate the same significance. Furthermore, analysis of a DEN-induced HCC rat model confirmed the significantly elevated expression of LRRC41 and SOX9 in HCC and lung metastasis tissues. Drug sensitivity analysis and molecular docking targeting LRRC41 identified several FDA-approved drugs, which may have potential antitumor effects on HCC by targeting LRRC41. Conclusion: Our findings highlight the role of LRRC41 overexpression in promoting HCC progression and its association with a poor prognosis. Drug sensitivity analysis and molecular docking shows several FDA-approved drugs may be potential therapeutic targets for HCC. Targeting LRRC41 may hold promise as a potential therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Jun Li
- The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Chenjie Qin
- State Key Laboratory of Systems Medicine for Cancer, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yicheng Wu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital Affiliated to the Naval Medical University, Shanghai, China
| | - Sheng Cheng
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanqing Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Huijie Chen
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangli Chen
- Department of Hematology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingdi Chen
- The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Jutang Li
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Kumar S, Pandey AK. Potential Molecular Targeted Therapy for Unresectable Hepatocellular Carcinoma. Curr Oncol 2023; 30:1363-1380. [PMID: 36826066 PMCID: PMC9955633 DOI: 10.3390/curroncol30020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers, representing a serious worldwide health concern. The recurrence incidence of hepatocellular carcinoma (HCC) following surgery or ablation is as high as 70%. Thus, the clinical applicability of standard surgery and other locoregional therapy to improve the outcomes of advanced HCC is restricted and far from ideal. The registered trials did not identify a treatment that prolonged recurrence-free survival, the primary outcome of the majority of research. Several investigator-initiated trials have demonstrated that various treatments extend patients' recurrence-free or overall survival after curative therapies. In the past decade, targeted therapy has made significant strides in the treatment of advanced HCC. These targeted medicines produce antitumour effects via specific signals, such as anti-angiogenesis or advancement of the cell cycle. As a typical systemic treatment option, it significantly improves the prognosis of this fatal disease. In addition, the combination of targeted therapy with an immune checkpoint inhibitor is redefining the paradigm of advanced HCC treatment. In this review, we focused on the role of approved targeted medicines and potential therapeutic targets in unresectable HCC.
Collapse
Affiliation(s)
- Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda 151401, Punjab, India
- Correspondence: (S.K.); (A.K.P.)
| | - Abhay Kumar Pandey
- Department of Biochemistry, University of Allahabad, University Road, Prayagraj 211002, Uttar Pradesh, India
- Correspondence: (S.K.); (A.K.P.)
| |
Collapse
|
3
|
Lu L, Zhan M, Li XY, Zhang H, Dauphars DJ, Jiang J, Yin H, Li SY, Luo S, Li Y, He YW. Clinically approved combination immunotherapy: Current status, limitations, and future perspective. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:118-127. [PMID: 35676925 PMCID: PMC9167882 DOI: 10.1016/j.crimmu.2022.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
Immune-checkpoint inhibitor-based combination immunotherapy has become a first-line treatment for several major types of cancer including hepatocellular carcinoma (HCC), renal cell carcinoma, lung cancer, cervical cancer, and gastric cancer. Combination immunotherapy counters several immunosuppressive elements in the tumor microenvironment and activates multiple steps of the cancer-immunity cycle. The anti-PD-L1 antibody, atezolizumab, plus the anti-vascular endothelial growth factor antibody, bevacizumab, represents a promising class of combination immunotherapy. This combination has produced unprecedented clinical efficacy in unresectable HCC and become a landmark in HCC therapy. Advanced HCC patients treated with atezolizumab plus bevacizumab demonstrated impressive improvements in multiple clinical endpoints including overall survival, progress-free survival, objective response rate, and patient-reported quality of life when compared to current first-line treatment with sorafenib. However, atezolizumab plus bevacizumab first-line therapy has limitations. First, cancer patients falling into the criteria for the combination therapy may need to be further selected to reap benefits while avoiding some potential pitfalls. Second, the treatment regimen of atezolizumab plus bevacizumab at a fixed dose may require adjustment for optimal normalization of the tumor microenvironment to obtain maximum efficacy and reduce adverse events. Third, utilization of predictive biomarkers is urgently needed to guide the entire treatment process. Here we review the current status of clinically approved combination immunotherapies and the underlying immune mechanisms. We further provide a perspective analysis of the limitations for combination immunotherapies and potential approaches to overcome the limitations.
Collapse
Affiliation(s)
- Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong Province, 519000, PR China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong Province, 519000, PR China
| | - Xian-Yang Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong Province, 519000, PR China
| | - Hui Zhang
- First Affiliated Hospital, China Medical University, Shenyang, China
| | - Danielle J. Dauphars
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jun Jiang
- Tricision Biotherapeutic Inc, Jinwan District, Zhuhai, China
| | - Hua Yin
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong Province, 519000, PR China
| | - Shi-You Li
- Tricision Biotherapeutic Inc, Jinwan District, Zhuhai, China
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yong Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong Province, 519000, PR China
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
4
|
Brown ZJ, Hewitt DB, Pawlik TM. Experimental drug treatments for hepatocellular carcinoma: Clinical trial failures 2015 to 2021. Expert Opin Investig Drugs 2022; 31:693-706. [PMID: 35580650 DOI: 10.1080/13543784.2022.2079491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a major health problem worldwide with limited systemic therapy options. Since the approval of sorafenib in 2008, no systemic therapy has provided a sustained/robust/survival benefit for patients with advanced HCC until recently. Many initially promising therapies have been trialed, but survival outcomes remained stagnant. As such, knowledge concerning previous treatment failures may help guide further areas of study, as well inform future therapeutic approaches. AREA COVERED This article reviews recent advances in the treatment of HCC. Despite some recent success, many systemic and locoregional therapies have failed to produce significant improvements in outcome. These treatment failures are examined and insight into pathways for future success are discussed. EXPERT OPINION Combination atezolizumab and bevacizumab has changed the landscape of systemic treatment for patients with HCC when it became the first therapy after demonstrating improve outcomes over sorafenib. Clinical trials in patients with advanced HCC have inherent difficulty with challenges to determine if a patient's declining liver function is secondary to disease progression, worsening cirrhosis, or drug toxicity, which may skew results. As we gain more knowledge of underlying genetic alterations behind the pathophysiology of the development of HCC, molecular markers may be identified to assist in predicting which patients would respond to a specific therapy.
Collapse
|
5
|
Sun EJ, Wankell M, Palamuthusingam P, McFarlane C, Hebbard L. Targeting the PI3K/Akt/mTOR Pathway in Hepatocellular Carcinoma. Biomedicines 2021; 9:biomedicines9111639. [PMID: 34829868 PMCID: PMC8615614 DOI: 10.3390/biomedicines9111639] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022] Open
Abstract
Despite advances in the treatment of cancers through surgical procedures and new pharmaceuticals, the treatment of hepatocellular carcinoma (HCC) remains challenging as reflected by low survival rates. The PI3K/Akt/mTOR pathway is an important signaling mechanism that regulates the cell cycle, proliferation, apoptosis, and metabolism. Importantly, deregulation of the PI3K/Akt/mTOR pathway leading to activation is common in HCC and is hence the subject of intense investigation and the focus of current therapeutics. In this review article, we consider the role of this pathway in the pathogenesis of HCC, focusing on its downstream effectors such as glycogen synthase kinase-3 (GSK-3), cAMP-response element-binding protein (CREB), forkhead box O protein (FOXO), murine double minute 2 (MDM2), p53, and nuclear factor-κB (NF-κB), and the cellular processes of lipogenesis and autophagy. In addition, we provide an update on the current ongoing clinical development of agents targeting this pathway for HCC treatments.
Collapse
Affiliation(s)
- Eun Jin Sun
- Centre for Molecular Therapeutics, Department of Molecular and Cell Biology, Australian Institute of Tropical Medicine and Health, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (E.J.S.); (M.W.); (C.M.)
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Miriam Wankell
- Centre for Molecular Therapeutics, Department of Molecular and Cell Biology, Australian Institute of Tropical Medicine and Health, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (E.J.S.); (M.W.); (C.M.)
| | - Pranavan Palamuthusingam
- Institute of Surgery, The Townsville University Hospital, Townsville, QLD 4811, Australia;
- Mater Hospital, Townsville, QLD 4811, Australia
| | - Craig McFarlane
- Centre for Molecular Therapeutics, Department of Molecular and Cell Biology, Australian Institute of Tropical Medicine and Health, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (E.J.S.); (M.W.); (C.M.)
| | - Lionel Hebbard
- Centre for Molecular Therapeutics, Department of Molecular and Cell Biology, Australian Institute of Tropical Medicine and Health, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (E.J.S.); (M.W.); (C.M.)
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW 2145, Australia
- Correspondence:
| |
Collapse
|
6
|
Niu M, Yi M, Li N, Wu K, Wu K. Advances of Targeted Therapy for Hepatocellular Carcinoma. Front Oncol 2021; 11:719896. [PMID: 34381735 PMCID: PMC8350567 DOI: 10.3389/fonc.2021.719896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the common and fatal malignancies, which is a significant global health problem. The clinical applicability of traditional surgery and other locoregional therapies is limited, and these therapeutic strategies are far from satisfactory in improving the outcomes of advanced HCC. In the past decade, targeted therapy had made a ground-breaking progress in advanced HCC. Those targeted therapies exert antitumor effects through specific signals, including anti-angiogenesis or cell cycle progression. As a standard systemic therapy option, it tremendously improves the survival of this devastating disease. Moreover, the combination of targeted therapy with immune checkpoint inhibitor (ICI) has demonstrated more potent anticancer effects and becomes the hot topic in clinical studies. The combining medications bring about a paradigm shift in the treatment of advanced HCC. In this review, we presented all approved targeted agents for advanced HCC with an emphasis on their clinical efficacy, summarized the advances of multi-target drugs in research for HCC and potential therapeutic targets for drug development. We also discussed the exciting results of the combination between targeted therapy and ICI.
Collapse
Affiliation(s)
- Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Kongju Wu
- Department of Nursing, Medical School of Pingdingshan University, Pingdingshan, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
7
|
Gallage S, García-Beccaria M, Szydlowska M, Rahbari M, Mohr R, Tacke F, Heikenwalder M. The therapeutic landscape of hepatocellular carcinoma. MED 2021; 2:505-552. [DOI: 10.1016/j.medj.2021.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
|
8
|
Lu X, Paliogiannis P, Calvisi DF, Chen X. Role of the Mammalian Target of Rapamycin Pathway in Liver Cancer: From Molecular Genetics to Targeted Therapies. Hepatology 2021; 73 Suppl 1:49-61. [PMID: 32394479 PMCID: PMC7655627 DOI: 10.1002/hep.31310] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022]
Abstract
Primary liver cancers, including hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), are highly lethal tumors, with high worldwide frequency and few effective treatment options. The mammalian target of rapamycin (mTOR) complex is a central regulator of cell growth and metabolism that integrates inputs from amino acids, nutrients, and extracellular signals. The mTOR protein is incorporated into two distinct complexes: mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Specifically, mTORC1 regulates protein synthesis, glucose and lipid metabolism, and autophagy, whereas mTORC2 promotes liver tumorigenesis through modulating the adenine/cytosine/guanine family of serine/threonine kinases, especially the protein kinase B proteins. In human HCC and iCCA samples, genomics analyses have revealed the frequent deregulation of the mTOR complexes. Both in vitro and in vivo studies have demonstrated the key role of mTORC1 and mTORC2 in liver-tumor development and progression. The first-generation mTOR inhibitors have been evaluated for effectiveness in liver-tumor treatment and have provided unsatisfactory results. Current research efforts are devoted to generating more efficacious mTOR inhibitors and identifying biomarkers for patient selection as well as for combination therapies. Here, we provide a comprehensive review of the mechanisms leading to a deregulated mTOR signaling cascade in liver cancers, the mechanisms whereby the mTOR pathway contributes to HCC and iCCA molecular pathogenesis, the therapeutic strategies, and the challenges to effectively inhibit mTOR in liver-cancer treatment. Conclusion: Deregulated mTOR signaling significantly contributes to HCC and iCCA molecular pathogenesis. mTOR inhibitors, presumably administered in association with other drugs, might be effective against subsets of human liver tumors.
Collapse
Affiliation(s)
- Xinjun Lu
- Department of Hepatic Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, United States
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Diego F. Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, United States
| |
Collapse
|
9
|
Dampened VEPH1 activates mTORC1 signaling by weakening the TSC1/TSC2 association in hepatocellular carcinoma. J Hepatol 2020; 73:1446-1459. [PMID: 32610114 DOI: 10.1016/j.jhep.2020.06.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Abnormal activation of mTORC1 signaling occurs at high frequency in hepatocellular carcinoma (HCC). However, the underlying causes of this aberrant activation remain elusive. In this study, we identified ventricular zone expressed pleckstrin homology domain-containing 1 (VEPH1) as a novel tumor suppressor that acts via the mTORC1 axis. METHODS We performed quantitative reverse-transcription PCR (92 pairs), western blot (30 pairs), and immunostaining (225 cases) assays in HCC tissue samples to evaluate VEPH1 expression. We explored the functional effects of VEPH1 on tumor growth and metastasis. Molecular and biochemical strategies were used to gain insight into mechanisms underlying the tumor-suppressive function of VEPH1. RESULTS VEPH1 is frequently silenced in HCC tissues, primarily resulting from let-7d upregulation. Decreased VEPH1 expression is associated with poor prognosis and aggressive tumor phenotypes in patients with HCC. VEPH1 mediates its tumor-suppressing activity through regulation of cell proliferation, migration and invasion in vitro and in vivo. The VEPH1 fragments 580-625aa and 447-579 aa bind directly to TSC1 (719-1,164aa) and TSC2 (1-420 aa), respectively, enhancing TSC1/TCS2 binding and promoting translocation of TSC2 to the membrane, which leads to increased TSC2 Ser1387 phosphorylation. Subsequently, Rheb is inactivated by the GTPase activity of TSC2, inhibiting mTORC1 signaling and contributing to changes in HCC carcinogenesis and metastasis. Rapamycin, the mTOR inhibitor, can inhibit the pro-tumorigenic effect of VEPH1 knockdown. Loss of VEPH1 correlates with decreased TSC2 Ser1387 phosphorylation and increased mTOR activity in HCC specimens. CONCLUSIONS The loss of VEPH1 leads to aberrantly activated mTORC1 signaling in HCC; rapamycin (or rapalogs) may serve as an effective treatment option for patients with HCC and dampened VEPH1 expression. LAY SUMMARY Abnormally activated mammalian target of rapamycin (mTOR) signaling is associated with poor tumor differentiation, early tumor recurrence and worse overall survival in patients with hepatocellular carcinoma. Herein, we identify low VEPH1 expression as a potential cause of abnormally activated mTOR signaling in hepatocellular carcinoma tissues. mTOR inhibitors could thus be an effective treatment option for patients with HCC and low VEPH1 expression.
Collapse
|
10
|
Choi J, Park S, Ahn J. RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance. Sci Rep 2020; 10:1861. [PMID: 32024872 PMCID: PMC7002431 DOI: 10.1038/s41598-020-58821-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 01/20/2020] [Indexed: 11/23/2022] Open
Abstract
Cancer is one of the most difficult diseases to treat owing to the drug resistance of tumour cells. Recent studies have revealed that drug responses are closely associated with genomic alterations in cancer cells. Numerous state-of-the-art machine learning models have been developed for prediction of drug responses using various genomic data and diverse drug molecular information, but those methods are ineffective to predict drug response to untrained drugs and gene expression patterns, which is known as the cold-start problem. In this study, we present a novel deep neural network model, termed RefDNN, for improved prediction of drug resistance and identification of biomarkers related to drug response. RefDNN exploits a collection of drugs, called reference drugs, to learn representations for a high-dimensional gene expression vector and a molecular structure vector of a drug and predicts drug response labels using the reference drug-based representations. These calculations come from the observation that similar chemicals have similar effects. The proposed model not only outperformed existing computational prediction models in most comparative experiments, but also showed more robust prediction for untrained drugs and cancer types than traditional machine learning models. RefDNN exploits the ElasticNet regularization to deal with high-dimensional gene expression data, which allows identification of gene markers associated with drug resistance. Lastly, we described an application of RefDNN in exploring a new candidate drug for liver cancer. As the proposed model can guarantee good prediction of drug responses to untrained drugs for given gene expression patterns, it may be of potential benefit in drug repositioning and personalized medicine.
Collapse
Affiliation(s)
- Jonghwan Choi
- Department of Computer Science, Yonsei University, Seoul, South Korea
| | - Sanghyun Park
- Department of Computer Science, Yonsei University, Seoul, South Korea.
| | - Jaegyoon Ahn
- Department of Computer Science & Engineering, Incheon National University, Incheon, South Korea.
| |
Collapse
|
11
|
Cervello M, Emma MR, Augello G, Cusimano A, Giannitrapani L, Soresi M, Akula SM, Abrams SL, Steelman LS, Gulino A, Belmonte B, Montalto G, McCubrey JA. New landscapes and horizons in hepatocellular carcinoma therapy. Aging (Albany NY) 2020; 12:3053-3094. [PMID: 32018226 PMCID: PMC7041742 DOI: 10.18632/aging.102777] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/12/2020] [Indexed: 04/12/2023]
Abstract
Hepatocellular carcinoma (HCC), is the sixth most frequent form of cancer and leads to the fourth highest number of deaths each year. HCC results from a combination of environmental factors and aging as there are driver mutations at oncogenes which occur during aging. Most of HCCs are diagnosed at advanced stage preventing curative therapies. Treatment in advanced stage is a challenging and pressing problem, and novel and well-tolerated therapies are urgently needed. We will discuss further advances beyond sorafenib that target additional signaling pathways and immune checkpoint proteins. The scenario of possible systemic therapies for patients with advanced HCC has changed dramatically in recent years. Personalized genomics and various other omics approaches may identify actionable biochemical targets, which are activated in individual patients, which may enhance therapeutic outcomes. Further studies are needed to identify predictive biomarkers and aberrantly activated signaling pathways capable of guiding the clinician in choosing the most appropriate therapy for the individual patient.
Collapse
Affiliation(s)
- Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Maria R. Emma
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Lydia Giannitrapani
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Maurizio Soresi
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Shaw M. Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Stephen L. Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Linda S. Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Alessandro Gulino
- Tumour Immunology Unit, Human Pathology Section, Department of Health Science, University of Palermo, Palermo, Italy
| | - Beatrice Belmonte
- Tumour Immunology Unit, Human Pathology Section, Department of Health Science, University of Palermo, Palermo, Italy
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
12
|
|
13
|
Wang Y, Zhang S, Liu J, Fang B, Yao J, Cheng B. Matrine inhibits the invasive and migratory properties of human hepatocellular carcinoma by regulating epithelial‑mesenchymal transition. Mol Med Rep 2018; 18:911-919. [PMID: 29845189 PMCID: PMC6059723 DOI: 10.3892/mmr.2018.9023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
Matrine has been reported to be an effective anti-tumor therapy; however, the anti-metastatic effects of matrine on hepatocellular carcinoma (HCC) and the molecular mechanism(s) involved remain unclear. Therefore, the aims of the present study were to evaluate the effects of matrine on hepatoma and to determine the associated mechanism(s) involved. In the present study, matrine was confirmed to prevent the proliferation of HCC cells and it was observed that matrine also inhibited the migratory, and invasive capabilities of HCC at non-toxic concentrations. Additionally, matrine increased epithelial-cadherin expression and decreased the expression levels of vimentin, matrix metalloproteinase (MMP)2, MMP9, zinc finger protein SNAI1 and zinc finger protein SNAI2. These results indicate that the anti-metastatic effect of matrine may be associated with epithelial-mesenchymal transition (EMT). Furthermore, matrine can increase phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN (PTEN) expression and reduce phosphorylated-protein kinase B (Akt) levels. In conclusion, these results suggested that matrine is a potential therapeutic agent that can suppress cancer-associated invasion and migration via PTEN/Akt-dependent inhibition of EMT.
Collapse
Affiliation(s)
- Yuwen Wang
- Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong 518110, P.R. China
| | - Shujun Zhang
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jia Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Biaobiao Fang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Jie Yao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Binglin Cheng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
14
|
Fang Y, Yang W, Cheng L, Meng F, Zhang J, Zhong Z. EGFR-targeted multifunctional polymersomal doxorubicin induces selective and potent suppression of orthotopic human liver cancer in vivo. Acta Biomater 2017; 64:323-333. [PMID: 29030307 DOI: 10.1016/j.actbio.2017.10.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/13/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023]
Abstract
Liver cancer is a globally leading malignancy that has a poor five-year survival rate of less than 20%. The systemic chemotherapeutics are generally ineffective for liver cancers partly due to fast clearance and low tumor uptake. Here, we report that GE11 peptide functionalized polymersomal doxorubicin (GE11-PS-DOX) effectively targets and inhibits epidermal growth factor receptor (EGFR)-positive SMMC7721 orthotopic human liver tumor xenografts in mice. GE11-PS-DOX with a GE11 surface density of 10% displayed a high drug loading of 15.4 wt%, a small size of 78 nm, and glutathione-triggered release of DOX. MTT assays, flow cytometry and confocal microscopy studies revealed that GE11-PS-DOX mediated obviously more efficient DOX delivery into SMMC7721 cells than the non-targeting PS-DOX and clinically used liposomal doxorubicin (Lipo-DOX) controls. The in vivo studies showed that GE11-PS-DOX had a long circulation time and an extraordinary accumulation in the tumors (13.3 %ID/g). Interestingly, GE11-PS-DOX caused much better treatment of SMMC7721 orthotopic liver tumor-bearing mice as compared to PS-DOX and Lipo-DOX. The mice treated with GE11-PS-DOX (12 mg DOX equiv./kg) exhibited a significantly improved survival rate (median survival time: 130 days versus 70 and 38 days for PS-DOX at 12 mg DOX equiv./kg and Lipo-DOX at 6 mg DOX equiv./kg, respectively) and achieved 50% complete regression. Notably, GE11-PS-DOX induced obviously lower systemic toxicity than Lipo-DOX. EGFR-targeted multifunctional polymersomal doxorubicin with improved efficacy and safety has a high potential for treating human liver cancers. STATEMENT OF SIGNIFICANCE Liver cancer is one of the top five leading causes of cancer death worldwide. The systemic chemotherapeutics and biotherapeutics generally have a low treatment efficacy for hepatocellular carcinoma partly due to fast clearance and/or low tumor uptake. Nanomedicines based on biodegradable micelle and polymersomes offer a most promising treatment for malignant liver cancers. Their clinical effectiveness remains, however, suboptimal owing to issues like inadequate systemic stability, low tumor accumulation and selectivity, and poor control over drug release. Here we report that GE11 peptide-functionalized, disulfide-crosslinked multifunctional polymersomal doxorubicin (GE11-PS-DOX) can effectively suppress the growth of orthotopic SMMC7721 human liver tumors in nude mice. They showed significantly decreased systemic toxicity and improved mouse survival rate with 3.4-fold longer median survival time as compared to clinically used pegylated liposomal doxorubicin (Lipo-DOX) and achieving 50% complete regression. GE11-PS-DOX, based on PEG-PTMC is biodegradable, nontoxic, and easy to prepare, appears as a safe, robust, versatile and all-function-in-one nanoplatform that has a high potential in targeted chemotherapy of EGFR expressed hepatocellular carcinoma.
Collapse
|
15
|
Raoul JL, Gilabert M, Adhoute X, Edeline J. An in-depth review of chemical angiogenesis inhibitors for treating hepatocellular carcinoma. Expert Opin Pharmacother 2017; 18:1467-1476. [PMID: 28893090 DOI: 10.1080/14656566.2017.1378346] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a frequent and severe complication of cirrhosis. Most HCC patients initially present with or progress to advanced stage disease and require systemic treatment. As hypervascularization is a major characteristic of HCC, antiangiogenic drugs have been tested. Areas covered: In this review, we summarize data on the use of drugs targeting the angiogenesis. Despite many trials, in 2017 only 3 drugs, all antiangiogenic, have demonstrated efficacy in first (sorafenib, lenvatinib) or second line (regorafenib) treatment of advanced HCC. The heterogeneous mechanisms of action and the major reasons for failure of most trials are discussed. An English-language, abstract-based literature review was performed by a PubMed-based strategy. Expert opinion: Currently all trials based on purely antiangiogenic compounds (bevacizumab, linifanib, brivanib and ramucirumab) or drugs with strong antiangiogenic properties (sunitinib) have failed (increased toxicity, minor efficacy and/or flaws in trial design); sorafenib, lenvatinib and regorafenib are multityrosine kinase inhibitors and their efficacy can be partly related to another mechanism of action. We need to better refine future trials design (randomized phase 2, good stratification factors and marker-enriched patient selection) in order to progress toward customized treatment, perhaps in association with immunotherapy.
Collapse
Affiliation(s)
- Jean-Luc Raoul
- a Department of Medical Oncology , Paoli-Calmettes Institute , Marseille , France
| | - Marine Gilabert
- a Department of Medical Oncology , Paoli-Calmettes Institute , Marseille , France
| | - Xavier Adhoute
- b Department of Hepato-Gastroenterology , Hôpital Saint-Joseph , Marseille , France
| | - Julien Edeline
- c Department of Medical Oncology , Center Eugène Marquis , Rennes , France
| |
Collapse
|
16
|
Connell LC, Harding JJ, Abou-Alfa GK. Advanced Hepatocellular Cancer: the Current State of Future Research. Curr Treat Options Oncol 2017; 17:43. [PMID: 27344158 DOI: 10.1007/s11864-016-0415-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OPINION STATEMENT Hepatocellular carcinoma is a common malignancy worldwide, rapidly rising in incidence. While there have been some developments in advancing therapeutic options in this disease, these have admittedly been modest to date, and as a result, this is a patient population with an inherently poor prognosis. Currently, sorafenib remains the only established systemic therapy proven to increase the overall survival of patients with advanced disease. The approval of sorafenib in 2007 ushered in the era of targeted therapies. Several phase 2 and 3 clinical trials have failed however to improve on sorafenib in the first-line setting, and no single agent has been demonstrated to impact outcomes after sorafenib failure. Having reached somewhat of an impasse in terms of drug development in hepatocellular carcinoma, enthusiasm in the field has moved toward innovative approaches such as molecular characterization and immunotherapy in an attempt to impact survival. This review highlights the current endeavors in terms of experimental research for patients with advanced hepatocellular carcinoma.
Collapse
Affiliation(s)
- Louise C Connell
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY, 10065, USA
| | - James J Harding
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Ghassan K Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY, 10065, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
17
|
Zhao DY, Lim KH. Current biologics for treatment of biliary tract cancers. J Gastrointest Oncol 2017; 8:430-440. [PMID: 28736630 PMCID: PMC5506280 DOI: 10.21037/jgo.2017.05.04] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/26/2017] [Indexed: 12/16/2022] Open
Abstract
Biliary tract cancers (BTC) is a group of malignancies that arise from the epithelial cells of the biliary tree. These cancers are typically classified by anatomic site of origin: intrahepatic cholangiocarcinoma (IHCC) and extrahepatic cholangiocarcinoma (EHCC), and gallbladder cancer (GBC). To date, complete surgical resection remains the mainstay of treatment especially for earlier stage disease. Unfortunately, most patients present with advanced or metastatic disease, when systemic chemotherapy is the only treatment option. Due to the paucity of effective treatments, BTCs have a dismal prognosis. There is a tremendous need to better understand the disease biology, discover new therapies, and improve clinical outcomes for this challenging disease. Next-generation sequencing has produced a more accurate and detailed picture of the molecular signatures in BTCs. The three BTC histologic subtypes are, in fact, quite molecularly distinct. IHCC commonly contain FGFR2 fusions and IDH 1 and 2 mutations, whereas EHCC and GBC tend to carry mutations in EGFR, HER2, and MAPK pathway. In light of this emerging knowledge, clinical trials have become more biomarker-driven, which allows capturing of subsets of patients that are most likely to respond to certain therapies. Many new and promising targeted therapeutics are currently in the pipeline. Here we review the genetic landscape of BTCs while focusing on new molecular targets and targeted therapeutics currently being investigated in biomarker-driven clinical trials.
Collapse
Affiliation(s)
- Diana Y. Zhao
- Medical Scientist Training Program, Department of Internal Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
18
|
Tarakanovskaya MG, Chinburen J, Batchuluun P, Munkhzaya C, Purevsuren G, Dandii D, Hulan T, Oyungerel D, Kutsyna GA, Reid AA, Borisova V, Bain AI, Jirathitikal V, Bourinbaiar AS. Open-label Phase II clinical trial in 75 patients with advanced hepatocellular carcinoma receiving daily dose of tableted liver cancer vaccine, hepcortespenlisimut-L. J Hepatocell Carcinoma 2017; 4:59-69. [PMID: 28443252 PMCID: PMC5396941 DOI: 10.2147/jhc.s122507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background An increasing number of studies is now devoted to immunotherapy of cancer. We evaluated the clinical benefit of hepcortespenlisimut-L (Hepko-V5 [formerly known as V5])—an oral therapeutic vaccine designated by the United States Food and Drug Administration (FDA) as an orphan drug for treatment of hepatocellular carcinoma (HCC). V5 was initially developed by us in 2002 to treat hepatitis B or C viral infections and liver cirrhosis. Methods The outcome of open-label Phase II trial of daily dose of V5 pill was analyzed retrospectively. Over a period of 5 years, 75 patients with advanced HCC were enrolled, consisting of 29 (38.7%) females and 46 (61.3%) males with a median age of 60 years (mean 61.6±8.1 years). Out of these, 23 (30.7%) had hepatitis B and 34 (45.3%) had hepatitis C infections, including 9 (12%) with dual infection, 4 (5.3%) negative for both viruses, and 5 (6.7%) without established viral diagnosis. Most patients (94.7%) had underlying liver cirrhosis of varying severity. Results After a median of 2 months of treatment, 50 out of 75 patients had experienced a decline in serum levels of the tumor marker, alpha-fetoprotein (AFP) (66.7%; P=0.006 by Wilcoxon signed rank test). Baseline median AFP levels were 245.2 IU/mL (mean 4,233; range 7.2–92,407; 95% confidence interval [CI] 1,186–7,280) and post-treatment values were 102.3 IU/mL (mean 2,539; range 0.9–54,478; 95% CI 503–4,575). The decrease in AFP was correlated either with tumor clearance or regression on computed tomography scans. The median overall survival time could not be established since 68 out of 75 (90.7%) patients were still alive after median follow-up of 12 months (mean 15±9.7; range 7–59; 95% CI 12.8–17.2). The first patient in this study received immunotherapy 5 years ago and still remains in complete remission. None of the patients experienced any serious adverse effects or toxicity. Conclusion The results indicate that hepcortespenlismut-L is a safe, effective, and fast-acting immunomodulatory intervention for HCC. The Phase III, randomized, double-blind, placebo-controlled trial is now initiated at the Mongolian National Cancer Center to confirm these promising findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Galyna A Kutsyna
- Department of Infectious Diseases, Luhansk State Medical University, Luhansk, Ukraine
| | - Alan A Reid
- Immunitor China Ltd, Beijing, People's Republic of China
| | - Vika Borisova
- Immunitor China Ltd, Beijing, People's Republic of China
| | | | | | - Aldar S Bourinbaiar
- Immunitor China Ltd, Beijing, People's Republic of China.,Immunitor Inc, Vancouver, BC, Canada.,Immunitor LLC, Ulaanbaatar, Mongolia
| |
Collapse
|
19
|
Liu L, Qin S, Zheng Y, Han L, Zhang M, Luo N, Liu Z, Gu N, Gu X, Yin X. Molecular targeting of VEGF/VEGFR signaling by the anti-VEGF monoclonal antibody BD0801 inhibits the growth and induces apoptosis of human hepatocellular carcinoma cells in vitro and in vivo. Cancer Biol Ther 2017; 18:166-176. [PMID: 28368741 DOI: 10.1080/15384047.2017.1282019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third-leading cause of cancer-related deaths with 750,000 newly diagnosed cases each year. Surgery, radiotherapy, and chemotherapy constitute the main treatment modalities for HCC, but liver cirrhosis and damage often occur. Molecular targeted drugs have been recently developed to treat HCC. Vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) autocrine signaling is closely related to the growth, progression, and metastasis of HCC, making the VEGF/VEGFR axis an ideal target for the development of molecular targeted agents. Here, we report the effects of the novel anti-VEGF humanized monoclonal antibody BD0801 on the growth of HCC cells in vitro and in vivo as well as the underlying mechanisms. BD0801 significantly inhibited the proliferation of HepG2, SMMC-7721, and Bel7402 cells in vitro, accompanied with an induction of apoptosis and cell cycle arrest at the G1 phase. BD0801 potently suppressed AKT, Erk1/2, and retinoblastoma (Rb) phosphorylation, while increasing p21 and decreasing cyclin D1 protein levels. BD0801 significantly inhibited growth in mouse tumor xenografts and induced cell apoptosis of HepG2 and SMMC-7721 tumor xenografts. Furthermore, BD0801 effectively reduced the vascular density and tumor tissue microvessel density (MVD). Similarly, BD0801 decreased AKT, Erk1/2, and Rb phosphorylation and cyclin D1 expression whereas it increased p21 protein expression in mouse HCC tumor xenografts. Importantly, BD0801 showed a better effect than Bevacizumab (Bev) on the inhibition of cell growth and induction of apoptosis in HCC cells in vitro and in vivo. These findings suggest that BD0801 is a potent anti-VEGF monoclonal antibody for the treatment of HCC.
Collapse
Affiliation(s)
- Lin Liu
- a Department of Oncology , Zhong-Da Hospital, School of Medicine, Southeast University , Nanjing , China.,b Post-doctoral Scientific Research Workstation, Jin-Ling Hospital, Medical School of Nanjing University , Nanjing , China
| | - Shukui Qin
- c Department of Oncology , 81st Hospital of the People's Liberation Army , Nanjing , China
| | - Yinghui Zheng
- a Department of Oncology , Zhong-Da Hospital, School of Medicine, Southeast University , Nanjing , China
| | - Li Han
- a Department of Oncology , Zhong-Da Hospital, School of Medicine, Southeast University , Nanjing , China
| | - Minmin Zhang
- a Department of Oncology , Zhong-Da Hospital, School of Medicine, Southeast University , Nanjing , China
| | - Nuo Luo
- a Department of Oncology , Zhong-Da Hospital, School of Medicine, Southeast University , Nanjing , China
| | - Zhengcao Liu
- a Department of Oncology , Zhong-Da Hospital, School of Medicine, Southeast University , Nanjing , China
| | - Ning Gu
- d State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices , School of Biological Sciences & Medical Engineering, Southeast University , Nanjing , China
| | - Xiaoyi Gu
- a Department of Oncology , Zhong-Da Hospital, School of Medicine, Southeast University , Nanjing , China
| | - Xiaojin Yin
- e Jiangsu Simcere Drug Research Ltd. , Nanjing , China
| |
Collapse
|
20
|
Abstract
Hepatocellular carcinoma (HCC), also called malignant hepatoma, is one of the deadliest cancers due to its complexities, reoccurrence after surgical resection, metastasis and heterogeneity. Incidence and mortality of HCC are increasing in Western countries and are expected to rise as a consequence of the obesity epidemic. Multiple factors trigger the initiation and progression of HCC including chronic alcohol consumption, viral hepatitis B and C infection, metabolic disorders and age. Although Sorafenib is the only FDA approved drug for the treatment of HCC, numerous treatment modalities such as transcatheter arterial chemoembolization/transarterial chemoembolization (TACE), radiotherapy, locoregional therapy and chemotherapy have been tested in the clinics. Polymeric nanoparticles, liposomes, and micelles carrying small molecules, proteins, peptides and nucleic acids have attracted great attention for the treatment of various cancers including HCC. Herein, we discuss the pathogenesis of HCC in relation to its various recent treatment methodologies using nanodelivery of monoclonal antibodies (mAbs), small molecules, miRNAs and peptides. Synopsis of recent clinical trials of mAbs and peptide drugs has been presented with a broad overview of the pathogenesis of the disease and treatment efficacy.
Collapse
Affiliation(s)
- Rinku Dutta
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
21
|
Caloric restriction - A promising anti-cancer approach: From molecular mechanisms to clinical trials. Biochim Biophys Acta Rev Cancer 2016; 1867:29-41. [PMID: 27871964 DOI: 10.1016/j.bbcan.2016.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death worldwide and the morbidity is growing in developed countries. According to WHO, >14 million people per year are diagnosed with cancer and about 8 million die. Anti-cancer strategy includes chemo-, immune- and radiotherapy or their combination. Unfortunately, these widely used strategies often have insufficient efficacy and significant toxic effects on healthy cells. Consequently, the improvement of treatment approaches is an important goal. One of promising schemes to enhance the effect of therapy is the restriction of calorie intake or some nutrients. The combination of caloric restriction or its chemical mimetics along with anti-cancer drugs may suppress growth of tumor cells and enhance death of cancer cells. That will allow the dose of therapeutic drugs to be decreased and their toxic effects to be reduced. Here the possibility of using this combinatory therapy as well as the molecular mechanisms underlying this approach will be discussed.
Collapse
|
22
|
Lin J, Wu L, Bai X, Xie Y, Wang A, Zhang H, Yang X, Wan X, Lu X, Sang X, Zhao H. Combination treatment including targeted therapy for advanced hepatocellular carcinoma. Oncotarget 2016; 7:71036-71051. [PMID: 27626176 PMCID: PMC5342607 DOI: 10.18632/oncotarget.11954] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022] Open
Abstract
Management of advanced hepatocellular carcinoma (HCC), one of the most lethal cancers worldwide, has presented a therapeutic challenge over past decades. Most patients with advanced HCC and a low possibility of surgical resection have limited treatment options and no alternative but to accept local or palliative treatment. In the new era of cancer therapy, increasing numbers of molecular targeted agents (MTAs) have been applied in the treatment of advanced HCC. However, mono-targeted therapy has shown disappointing outcomes in disease control, primarily because of tumor heterogeneity and complex cell signal transduction. Because incapacitation of a single target is insufficient for cancer suppression, combination treatment for targeted therapy has been proposed and experimentally tested in several clinical trials. In this article, we review research studies aimed to enhance the efficacy of targeted therapy for HCC through combination strategies. Combination treatments involving targeted therapy for advanced HCC are compared and discussed.
Collapse
Affiliation(s)
- Jianzhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liangcai Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xue Bai
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yuan Xie
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Anqiang Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Haohai Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiaobo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xueshuai Wan
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
- Center of Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Montella L, Palmieri G, Addeo R, Del Prete S. Hepatocellular carcinoma: Will novel targeted drugs really impact the next future? World J Gastroenterol 2016; 22:6114-6126. [PMID: 27468204 PMCID: PMC4945973 DOI: 10.3748/wjg.v22.i27.6114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/09/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer treatment has been revolutionized by the advent of new molecular targeted and immunotherapeutic agents. Identification of the role of tumor angiogenesis changed the understanding of many tumors. After the unsuccessful results with chemotherapy, sorafenib, by interfering with angiogenic pathways, has become pivotal in the treatment of hepatocellular carcinoma. Sorafenib is the only systemic treatment to show a modest but statistically significant survival benefit. All novel drugs and strategies for treatment of advanced hepatocellular carcinoma must be compared with the results obtained with sorafenib, but no new drug or drug combination has yet achieved better results. In our opinion, the efforts to impact the natural history of the disease will be directed not only to drug development but also to understanding the underlying liver disease (usually hepatitis B virus- or hepatitis C virus-related) and to interrupting the progression of cirrhosis. It will be important to define the role and amount of mutations in the complex pathogenesis of hepatocellular carcinoma and to better integrate locoregional and systemic therapies. It will be important also to optimize the therapeutic strategies with existing chemotherapeutic drugs and new targeted agents.
Collapse
|
24
|
A phase I trial of ANG1/2-Tie2 inhibitor trebaninib (AMG386) and temsirolimus in advanced solid tumors (PJC008/NCI♯9041). Invest New Drugs 2015; 34:104-11. [PMID: 26686201 PMCID: PMC4718956 DOI: 10.1007/s10637-015-0313-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/03/2015] [Indexed: 11/22/2022]
Abstract
Background There is crosstalk between the ANG-Tie2 and the PI3K/Akt/mTOR pathways. Combined ANG1/2 and mTOR blockade may have additive anti-cancer activity. The combination of trebananib, an inhibitor of ANG1/2-Tie2 interaction, with temsirolimus was evaluated in patients with advanced solid tumors to determine tolerability, maximum tolerated dose (MTD), and preliminary antitumor activity. Methods Patients were enrolled using 3 + 3 design, and were given intravenous trebananib and temsirolimus on Day 1, 8, 15 and 22 of a 28-day cycle. Dose limiting toxicities (DLTs) were evaluated during cycle 1. Peripheral blood was collected for evaluation of Tie2-expressing monocytes (TEMs) and thymidine phosphorylase (TP). Sparse pharmacokinetic (PK) sampling for trebananib drug levels was performed on Day 1 and 8 of cycle 2. Results Twenty-one patients were enrolled, 6 at dose level (DL) 1, 7 at DL −1, and 8 at DL −2. No effect of temsirolimus on trebananib PK was observed. The most common treatment-related adverse events (AEs) were: fatigue (81 %), edema (62 %), anorexia (57 %), nausea (52 %), rash (43 %) and mucositis (43 %). The most common grade ≥ 3 AEs included lymphopenia (28 %) and fatigue (28 %). The MTD was exceeded at DL-2. Of 18 response evaluable patients, 1 partial response was observed (ER+/HER2−/PIK3CA mutant breast cancer) and 4 patients had prolonged SD ≥ 24 weeks. No correlation with clinical benefit was observed with change in number TEMs or TP expression in TEMs with treatment. Conclusions The MTD was exceeded at trebananib 10 mg/kg weekly and temsirolimus 20 mg weekly, with frequent overlapping toxicities including fatigue, edema, and anorexia.
Collapse
|
25
|
WANG CONGREN, WANG XUEJIN, SU ZIJIAN, FEI HONGJIANG, LIU XIAOYU, PAN QUNXIONG. The novel mTOR inhibitor Torin-2 induces autophagy and downregulates the expression of UHRF1 to suppress hepatocarcinoma cell growth. Oncol Rep 2015; 34:1708-16. [DOI: 10.3892/or.2015.4146] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/29/2015] [Indexed: 11/06/2022] Open
|
26
|
Knox JJ, Cleary SP, Dawson LA. Localized and Systemic Approaches to Treating Hepatocellular Carcinoma. J Clin Oncol 2015; 33:1835-44. [DOI: 10.1200/jco.2014.60.1153] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Jennifer J. Knox
- All authors: University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Sean P. Cleary
- All authors: University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Laura A. Dawson
- All authors: University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|