1
|
Jiang D, An X, Xu Q, Mo G, Ling W, Ji C, Wang Z, Wang X, Sun Q, Kang B. Effects of ferritin heavy chain on oxidative stress, cell proliferation and apoptosis in geese follicular granulosa cells. Br Poult Sci 2024; 65:297-306. [PMID: 38456722 DOI: 10.1080/00071668.2024.2315086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/02/2023] [Indexed: 03/09/2024]
Abstract
1. The ferritin heavy chain (FHC) has a vital impact on follicular development in geese, due to its ability to regulate apoptosis of granulosa cells (GCs) and follicular atresia. However, its specific regulatory mechanisms remain unclear. The present study characterised how FHC regulates oxidative stress, cell proliferation and apoptosis in goose GCs by interfering with and overexpressing the FHC gene.2. After 72 h of interference with FHC expression, the activity of GCs decreased remarkably (p < 0.05), reactive oxygen species (ROS) levels and the expression levels of antioxidant enzyme genes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) increased significantly (p < 0.05). The overexpression of FHC for 72 h was found to significantly reduce the expression of CAT and SOD genes (p < 0.05).3. Interfering with FHC expression revealed that the expression levels of the cell proliferation gene Aurora kinase A (AURORA-A) were significantly decreased (p < 0.05), while the expression levels of the apoptosis genes B-cell lymphoma-2 (BCL-2) and cysteine aspartate-specific protease 8 (CASPASE 8) increased (p < 0.05). Further research has shown that, when interfering with FHC expression for 72 h, apoptosis rate increased by 1.19-fold (p < 0.05), but the current data showed a lower apoptosis rate after FHC overexpression by 59.41%, 63.39%, and 52.31% at three different treatment times (p < 0.05).4. In conclusion, FHC improved the antioxidant capacity of GCs, promotes GCs proliferation, and inhibits GCs apoptosis of ovarian follicles in Sichuan white geese.
Collapse
Affiliation(s)
- D Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - X An
- State Key Laboratory of Swine and Poultry Breeding Industry,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - Q Xu
- State Key Laboratory of Swine and Poultry Breeding Industry,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - G Mo
- State Key Laboratory of Swine and Poultry Breeding Industry,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - W Ling
- State Key Laboratory of Swine and Poultry Breeding Industry,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - C Ji
- State Key Laboratory of Swine and Poultry Breeding Industry,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - Z Wang
- State Key Laboratory of Swine and Poultry Breeding Industry,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - X Wang
- State Key Laboratory of Swine and Poultry Breeding Industry,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - Q Sun
- State Key Laboratory of Swine and Poultry Breeding Industry,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - B Kang
- State Key Laboratory of Swine and Poultry Breeding Industry,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| |
Collapse
|
2
|
Joshi N, Garapati K, Ghose V, Kandasamy RK, Pandey A. Recent progress in mass spectrometry-based urinary proteomics. Clin Proteomics 2024; 21:14. [PMID: 38389064 PMCID: PMC10885485 DOI: 10.1186/s12014-024-09462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Serum or plasma is frequently utilized in biomedical research; however, its application is impeded by the requirement for invasive sample collection. The non-invasive nature of urine collection makes it an attractive alternative for disease characterization and biomarker discovery. Mass spectrometry-based protein profiling of urine has led to the discovery of several disease-associated biomarkers. Proteomic analysis of urine has not only been applied to disorders of the kidney and urinary bladder but also to conditions affecting distant organs because proteins excreted in the urine originate from multiple organs. This review provides a progress update on urinary proteomics carried out over the past decade. Studies summarized in this review have expanded the catalog of proteins detected in the urine in a variety of clinical conditions. The wide range of applications of urine analysis-from characterizing diseases to discovering predictive, diagnostic and prognostic markers-continues to drive investigations of the urinary proteome.
Collapse
Affiliation(s)
- Neha Joshi
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kishore Garapati
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Vivek Ghose
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Richard K Kandasamy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
3
|
Jiang D, Niu C, Mo G, Wang X, Sun Q, An X, Ji C, Ling W, Li L, Zhao H, Han C, Liu H, Hu J, Kang B. Ferritin heavy chain participated in ameliorating 3-nitropropionic acid-induced oxidative stress and apoptosis of goose follicular granulosa cells. Poult Sci 2023; 102:102606. [PMID: 36940654 PMCID: PMC10033315 DOI: 10.1016/j.psj.2023.102606] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Oxidative stress is the major culprits responsible for ovarian dysfunction by damaging granulosa cells (GCs). Ferritin heavy chain (FHC) may participate in the regulation of ovarian function by mediating GCs apoptosis. However, the specific regulatory function of FHC in follicular GCs remains unclear. Here, 3-nitropropionic acid (3-NPA) was utilized to establish an oxidative stress model of follicular GCs of Sichuan white geese. To explore the regulatory effects of FHC on oxidative stress and apoptosis of primary GCs in geese by interfering or overexpressing FHC gene. After transfection of siRNA-FHC to GCs for 60 h, the expressions of FHC gene and protein decreased significantly (P < 0.05). After FHC overexpression for 72 h, the expressions of FHC mRNA and protein upregulated considerably (P < 0.05). The activity of GCs was impaired after interfering with FHC and 3-NPA coincubated (P < 0.05). When overexpression of FHC combined with 3-NPA treatment, the activity of GCs was remarkably enhanced (P < 0.05). After interference FHC and 3-NPA treatment, NF-κB and NRF2 gene expression decreased (P < 0.05), the intracellular reactive oxygen species (ROS) level increased greatly (P < 0.05), BCL-2 expression reduced, BAX/BCL-2 ratio intensified (P < 0.05), the mitochondrial membrane potential decreased notably (P < 0.05), and the apoptosis rate of GCs aggravated (P < 0.05). While overexpression of FHC combined with 3-NPA treatment could promote BCL-2 protein expression and reduce BAX/BCL-2 ratio, indicating that FHC regulated the mitochondrial membrane potential and apoptosis of GCs by mediating the expression of BCL-2. Taken together, our research manifested that FHC alleviated the inhibitory effect of 3-NPA on the activity of GCs. FHC knockdown could suppress the expression of NRF2 and NF-κB genes, reduce BCL-2 expression and augment BAX/BCL-2 ratio, contributing to the accumulation of ROS and jeopardizing mitochondrial membrane potential, as well as exacerbating GCs apoptosis.
Collapse
Affiliation(s)
- Dongmei Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Chunyang Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Guilin Mo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Xin Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Qian Sun
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Xiaoguang An
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Chengweng Ji
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Weikang Ling
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Liang Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, PR China
| | - Chunchun Han
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Hehe Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Jiwei Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China.
| |
Collapse
|
4
|
Yan G, Zhang H, Li Y, Miao G, Liu X, Lv Q. Viscosalactone B, a natural LSD1 inhibitor, inhibits proliferation in vitro and in vivo against prostate cancer cells. Invest New Drugs 2023; 41:134-141. [PMID: 36692618 DOI: 10.1007/s10637-023-01330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/05/2023] [Indexed: 01/25/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) has been a promising target to treat prostate cancer, and discovery of novel LSD1 inhibitors would have great clinical significance. In this work, viscosalactone B was first identified as a novel LSD1 inhibitor. Viscosalactone B isolated from Withania Somnifera displayed antiproliferative activity against PC3, DU145, C42B, PC3/MDVR, DU145/MDVR, and C42B/MDVR cells with IC50 values of 1.17, 0.72, 3.86, 2.06, 0.96 and 1.15 μM, respectively. In comparison, it was a selective LSD1 inhibitor with an IC50 value of 970.27 nM and could induce a significant accumulation of LSD1 substrates H3K9me1, H3K9me2, and H3K4me1 in a concentration-dependent manner in DU145 cells. According to docking studies, it formed hydrogen bonds with the Thr11, Lys14, and Arg8 residues of LSD1. Importantly, while it displayed potent antitumor efficacy in vivo, it did not show obvious cytotoxicity on the major organs of nude mice. Therefore, viscosalactone B, as a novel LSD1 inhibitor, is a potential candidate that can be used for the treatment of prostate cancer in clinics.
Collapse
Affiliation(s)
- Gaobo Yan
- Dandong Center Hospital Laboratory, Dandong, 118002, China.
| | - Hongyan Zhang
- Dandong Center Hospital Laboratory, Dandong, 118002, China
| | - Yan Li
- Dandong Center Hospital Laboratory, Dandong, 118002, China
| | - Guoqiang Miao
- Dandong Center Hospital Laboratory, Dandong, 118002, China
| | - Xiaolei Liu
- Dandong Center Hospital Laboratory, Dandong, 118002, China
| | - Qifan Lv
- Dandong Center Hospital Laboratory, Dandong, 118002, China
| |
Collapse
|
5
|
Liu M, Liu S, Chen F. WWC1, a target of miR-138-5p, facilitates the progression of prostate cancer. Am J Med Sci 2022; 364:772-781. [PMID: 35970246 DOI: 10.1016/j.amjms.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 06/28/2022] [Accepted: 08/08/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND WWC1 is known to be involved in the development of cancer. Therefore, it is critical to study the molecular mechanisms and cellular roles of WWC1 in cancer therapy. METHODS In this study, we examined the effect of WWC1 on prostate cancer tumorigenesis and the role of miR-138-5p in prostate cancer. The expression levels of miR-138-5p and WWC1 in prostate cancer (Pca) tissues and cells were detected by real-time quantitative reverse transcription PCR and western blotting. Cell counting kit-8 and BrdU assays were performed to study cell proliferation and caspase-3 activity assay to detect apoptosis. Migration experiments were conducted to observe the movement ability of the cells. RESULTS The expression of WWC1 in Pca tissues or cell lines was increased, whereas miR-138-5p expression was decreased. MiR-138-5p targeted and partially neutralized the role of WWC1 in Pca cells. Moreover, reduced expression of WWC1 in Pca cell lines suppressed cell proliferation and migration and promoted apoptosis in vitro. CONCLUSIONS Collectively, these findings reveal a novel mechanism by which miR-138-5p negatively regulates WWC1 in Pca.
Collapse
Affiliation(s)
- Miao Liu
- Department of Laboratory, The Third People's Hospital of Hubei Province, Wuhan 430033, Hubei, China
| | - Shiguo Liu
- Department of Laboratory, The Third People's Hospital of Hubei Province, Wuhan 430033, Hubei, China
| | - Feng Chen
- Department of Laboratory, The Third People's Hospital of Hubei Province, Wuhan 430033, Hubei, China.
| |
Collapse
|
6
|
Application of Proteogenomics to Urine Analysis towards the Identification of Novel Biomarkers of Prostate Cancer: An Exploratory Study. Cancers (Basel) 2022; 14:cancers14082001. [PMID: 35454907 PMCID: PMC9031064 DOI: 10.3390/cancers14082001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Prostate cancer (PCa) is one of the most common cancers. Due to the limited and invasive approaches for PCa diagnosis, it is crucial to identify more accurate and non-invasive biomarkers for its detection. The aim of our study was to non-invasively uncover new protein targets for detecting PCa using a proteomics and proteogenomics approach. This work identified several dysregulated mutant protein isoforms in urine from PCa patients, some of them predicted to have a protective or an adverse role in these patients. These results are promising given urine’s non-invasive nature and offers an auspicious opportunity for research and development of PCa biomarkers. Abstract To identify new protein targets for PCa detection, first, a shotgun discovery experiment was performed to characterize the urinary proteome of PCa patients. This revealed 18 differentially abundant urinary proteins in PCa patients. Second, selected targets were clinically tested by immunoblot, and the soluble E-cadherin fragment was detected for the first time in the urine of PCa patients. Third, the proteogenome landscape of these PCa patients was characterized, revealing 1665 mutant protein isoforms. Statistical analysis revealed 6 differentially abundant mutant protein isoforms in PCa patients. Analysis of the likely effects of mutations on protein function and PPIs involving the dysregulated mutant protein isoforms suggests a protective role of mutations HSPG2*Q1062H and VASN*R161Q and an adverse role of AMBP*A286G and CD55*S162L in PCa patients. This work originally characterized the urinary proteome, focusing on the proteogenome profile of PCa patients, which is usually overlooked in the analysis of PCa and body fluids. Combined analysis of mass spectrometry data using two different software packages was performed for the first time in the context of PCa, which increased the robustness of the data analysis. The application of proteogenomics to urine proteomic analysis can be very enriching in mutation-related diseases such as cancer.
Collapse
|
7
|
Liu S, Cao X, Wang D, Zhu H. Iron metabolism: State of the art in hypoxic cancer cell biology. Arch Biochem Biophys 2022; 723:109199. [DOI: 10.1016/j.abb.2022.109199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/08/2023]
|
8
|
Dunphy K, O’Mahoney K, Dowling P, O’Gorman P, Bazou D. Clinical Proteomics of Biofluids in Haematological Malignancies. Int J Mol Sci 2021; 22:ijms22158021. [PMID: 34360786 PMCID: PMC8348619 DOI: 10.3390/ijms22158021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022] Open
Abstract
Since the emergence of high-throughput proteomic techniques and advances in clinical technologies, there has been a steady rise in the number of cancer-associated diagnostic, prognostic, and predictive biomarkers being identified and translated into clinical use. The characterisation of biofluids has become a core objective for many proteomic researchers in order to detect disease-associated protein biomarkers in a minimally invasive manner. The proteomes of biofluids, including serum, saliva, cerebrospinal fluid, and urine, are highly dynamic with protein abundance fluctuating depending on the physiological and/or pathophysiological context. Improvements in mass-spectrometric technologies have facilitated the in-depth characterisation of biofluid proteomes which are now considered hosts of a wide array of clinically relevant biomarkers. Promising efforts are being made in the field of biomarker diagnostics for haematologic malignancies. Several serum and urine-based biomarkers such as free light chains, β-microglobulin, and lactate dehydrogenase are quantified as part of the clinical assessment of haematological malignancies. However, novel, minimally invasive proteomic markers are required to aid diagnosis and prognosis and to monitor therapeutic response and minimal residual disease. This review focuses on biofluids as a promising source of proteomic biomarkers in haematologic malignancies and a key component of future diagnostic, prognostic, and disease-monitoring applications.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Kelly O’Mahoney
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland; (K.O.); (P.O.)
| | - Paul Dowling
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland; (K.O.); (P.O.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland; (K.O.); (P.O.)
- Correspondence:
| |
Collapse
|
9
|
Review of novel liquid-based biomarkers for prostate cancer: towards personalised and targeted medicine. JOURNAL OF RADIOTHERAPY IN PRACTICE 2021. [DOI: 10.1017/s1460396921000248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Background:
Prostate cancer is the most commonly diagnosed cancer in men and it is responsible for about 10% of all cancer mortalities in both American and Canadian men. At present, serum prostate-specific antigen levels remain the most commonly used test to detect prostate cancer, and the standard and definitive diagnosis of the disease is via prostate biopsy. Conventional tissue biopsies are usually invasive, expensive, painful, time-consuming, and unsuitable for screening and need to be consistently evaluated by expert pathologists and have limited repeatability. Consequently, liquid biopsies are emerging as a favourable alternative to conventional tissue biopsies, providing a non-invasive and cost-effective approach for screening, diagnosis, treatment and monitoring of prostate cancer patients.
Materials and methods:
We searched several databases from August to December 2020 for relevant studies published in English between 2000 and 2020 and reporting on liquid-based biomarkers available in detectable quantities in patient bodily fluid samples. In this narrative review paper, we describe seven novel and promising liquid-based biomarkers that potentially account for individual patient variability as well as used in disease risk assessment, screening for early disease detection and diagnosis, identification of patients’ risk for metastatic disease and subsequent relapse, monitoring patient response to specific treatment and providing clinicians the potential to stratify patients likely to benefit from a particular treatment.
Conclusions:
The concept of precision medicine from prevention to treatment techniques that take individual patient variability into account will depend on the development of effective clinical biomarkers that interrogate key aberrant pathways potentially targetable with molecular targets or immunologic therapies. Liquid-based biomarkers with high sensitivity and specificity for prostate cancer are emerging as minimally invasive, lower risk, readily obtainable and easily repeatable technique for screening for early disease detection and diagnosis, patient stratification at diagnosis into different risk categories, identification of patients’ risk for metastatic disease and subsequent relapse, and real-time monitoring of patient response to specific treatment. Thus, effective liquid-based biomarkers will potentially shift the treatment paradigm of prostate cancer towards more personalised and targeted medicine.
Collapse
|
10
|
Tonry C, Finn S, Armstrong J, Pennington SR. Clinical proteomics for prostate cancer: understanding prostate cancer pathology and protein biomarkers for improved disease management. Clin Proteomics 2020; 17:41. [PMID: 33292167 PMCID: PMC7678104 DOI: 10.1186/s12014-020-09305-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Following the introduction of routine Prostate Specific Antigen (PSA) screening in the early 1990's, Prostate Cancer (PCa) is often detected at an early stage. There are also a growing number of treatment options available and so the associated mortality rate is generally low. However, PCa is an extremely complex and heterogenous disease and many patients suffer disease recurrence following initial therapy. Disease recurrence commonly results in metastasis and metastatic PCa has an average survival rate of just 3-5 years. A significant problem in the clinical management of PCa is being able to differentiate between patients who will respond to standard therapies and those who may benefit from more aggressive intervention at an earlier stage. It is also acknowledged that for many men the disease is not life threatenting. Hence, there is a growing desire to identify patients who can be spared the significant side effects associated with PCa treatment until such time (if ever) their disease progresses to the point where treatment is required. To these important clinical needs, current biomarkers and clinical methods for patient stratification and personlised treatment are insufficient. This review provides a comprehensive overview of the complexities of PCa pathology and disease management. In this context it is possible to review current biomarkers and proteomic technologies that will support development of biomarker-driven decision tools to meet current important clinical needs. With such an in-depth understanding of disease pathology, the development of novel clinical biomarkers can proceed in an efficient and effective manner, such that they have a better chance of improving patient outcomes.
Collapse
Affiliation(s)
- Claire Tonry
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Stephen Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin 8, Ireland
| | | | | |
Collapse
|
11
|
Lu C, Zhao H, Luo C, Lei T, Zhang M. Knockdown of ferritin heavy chain (FTH) inhibits the migration of prostate cancer through reducing S100A4, S100A2, and S100P expression. Transl Cancer Res 2020; 9:5418-5429. [PMID: 35117907 PMCID: PMC8797967 DOI: 10.21037/tcr-19-2852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/08/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Ferritin plays a key role in the development of prostate cancer (PCa). Our earlier studies showed that the knockdown of ferritin heavy chain (FTH) suppressed the migration and invasion of the prostate cancer cell line (PC3). However, the mechanisms behind FTH in the cell migration regulation of PCa have not been thoroughly investigated. METHODS Isobaric tags for relative and absolute quantitation (iTRAQ) proteomics was used to analyze the protein expression in PC3 cells with FTH knockdown by small interfering RNAs and negative control cells. We subsequently ranked the differentially expressed proteins according to the change in expression. We further performed Gene Ontology (GO) analysis for the changing-expression protein. Finally, Western blot analysis was performed to determine the expression of the target protein. RESULTS Compared with the negative group, 420 proteins were downregulated, including proteins S100A4, S100P, and S100A2, while the expression of 442 protein was elevated in FTH-silencing PC3 cells (P<0.05, fold change >1.2). The mass spectrometry results showing decreased expression of protein S100A4, S100P, and S100A2 in the cells were further validated by Western blot (P<0.05). Levels of protein S100A4, S100A2, and S100P were reduced in FTH-silencing PC3 cells (P<0.05, fold change >1.6). CONCLUSIONS The downregulation of FTH expression reduced the level of protein S100A4, S100A2, and S100P, which all play a key role in the migration and invasion of tumor cells. Therefore, it is reasonable to assume that there are correlations between the expression of the S100A4, S100A2, and S100P genes with FTH. Based on this research, FTH may be a new biomarker for the diagnosis of PCa.
Collapse
Affiliation(s)
- Cuixiu Lu
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Huijun Zhao
- Clinical Laboratory Medicine, Capital Medical University, Beijing, China
| | - Chenshuo Luo
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Ting Lei
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Man Zhang
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China.,Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| |
Collapse
|
12
|
McNally CJ, Ruddock MW, Moore T, McKenna DJ. Biomarkers That Differentiate Benign Prostatic Hyperplasia from Prostate Cancer: A Literature Review. Cancer Manag Res 2020; 12:5225-5241. [PMID: 32669872 PMCID: PMC7335899 DOI: 10.2147/cmar.s250829] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022] Open
Abstract
Prediction of prostate cancer in primary care is typically based upon serum total prostate-specific antigen (tPSA) and digital rectal examination results. However, these tests lack sensitivity and specificity, leading to over-diagnosis of disease and unnecessary, invasive biopsies. Therefore, there is a clinical need for diagnostic tests that can differentiate between benign conditions and early-stage malignant disease in the prostate. In this review, we evaluate research papers published from 2009 to 2019 reporting biomarkers that identified or differentiated benign prostatic hyperplasia (BPH) from prostate cancer. Our review identifies hundreds of potential biomarkers in urine, serum, tissue, and semen proposed as useful targets for differentiating between prostate cancer and BPH patients. However, it is still not apparent which of these candidate biomarkers are most useful, and many will not progress beyond the discovery stage unless they are properly validated for clinical practice. We conclude that this validation will come through the use of multivariate panels which can assess the value of biomarker candidates in combination with clinical parameters as part of a risk prediction calculator. Implementation of such a model will help clinicians stratify patients with prostate cancer symptoms in primary care, with tangible benefits for both the patient and the health service.
Collapse
Affiliation(s)
- Christopher J McNally
- Randox Laboratories Ltd, Crumlin, Co. Antrim BT29 4QY, Northern Ireland.,Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, Northern Ireland
| | - Mark W Ruddock
- Randox Laboratories Ltd, Crumlin, Co. Antrim BT29 4QY, Northern Ireland
| | - Tara Moore
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, Northern Ireland
| | - Declan J McKenna
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, Northern Ireland
| |
Collapse
|
13
|
Zhang Q, Yin X, Pan Z, Cao Y, Han S, Gao G, Gao Z, Pan Z, Feng W. Identification of potential diagnostic and prognostic biomarkers for prostate cancer. Oncol Lett 2019; 18:4237-4245. [PMID: 31579071 PMCID: PMC6757266 DOI: 10.3892/ol.2019.10765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common malignant tumors worldwide. The aim of the present study was to determine potential diagnostic and prognostic biomarkers for PCa. The GSE103512 dataset was downloaded, and the differentially expressed genes (DEGs) were screened. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) analyses of DEGs were performed. The result of GO analysis suggested that the DEGs were mostly enriched in ‘carboxylic acid catabolic process’, ‘cell apoptosis’, ‘cell proliferation’ and ‘cell migration’. KEGG analysis results indicated that the DEGs were mostly concentrated in ‘metabolic pathways’, ‘ECM-receptor interaction’, the ‘PI3K-Akt pathway’ and ‘focal adhesion’. The PPI analysis results showed that Golgi membrane protein 1 (GOLM1), melanoma inhibitory activity member 3 (MIA3), ATP citrate lyase (ACLY) and G protein subunit β2 (GNB2) were the key genes in PCa, and the Module analysis revealed that they were associated with ‘ECM-receptor interaction’, ‘focal adhesion’, the ‘PI3K-Akt pathway’ and the ‘metabolic pathway’. Subsequently, the gene expression was confirmed using Gene Expression Profiling Interactive Analysis and the Human Protein Atlas. The results demonstrated that GOLM1 and ACLY expression was significantly upregulated (P<0.05) in PCa compared with that in normal tissues. Receiver operating characteristic and survival analyses were performed. The results showed that area under the curve values of these genes all exceeded 0.85, and high expression of these genes was associated with poor survival in patients with PCa. In conclusion, this study identified GOLM1 and ACLY in PCa, which may be potential diagnostic and prognostic biomarker of PCa.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiujuan Yin
- College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhiwei Pan
- Department of Medicine, Laizhou Development Zone Hospital, Yantai, Shandong 261400, P.R. China
| | - Yingying Cao
- College of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Shaojie Han
- Changle County Bureau of Animal Health and Production, Weifang, Shandong 261053, P.R. China
| | - Guojun Gao
- Urology Department, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhiqin Gao
- College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhifang Pan
- College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Weiguo Feng
- College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|