1
|
Song Y, Shi M, Wang Y. Deciphering the role of host-gut microbiota crosstalk via diverse sources of extracellular vesicles in colorectal cancer. Mol Med 2024; 30:200. [PMID: 39501131 PMCID: PMC11536884 DOI: 10.1186/s10020-024-00976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/26/2024] [Indexed: 11/09/2024] Open
Abstract
Colorectal cancer is the most common type of cancer in the digestive system and poses a major threat to human health. The gut microbiota has been found to be a key factor influencing the development of colorectal cancer. Extracellular vesicles are important mediators of intercellular communication. Not only do they regulate life activities within the same individual, but they have also been found in recent years to be important mediators of communication between different species, such as the gut microbiota and the host. Their preventive, diagnostic, and therapeutic value in colorectal cancer is being explored. The aim of this review is to provide insights into the complex interactions between host and gut microbiota, particularly those mediated through extracellular vesicles, and how these interactions affect colorectal cancer development. In addition, the potential of extracellular vesicles from various body fluids as biomarkers was evaluated. Finally, we discuss the potential, challenges, and future research directions of extracellular vesicles in their application to colorectal cancer. Overall, extracellular vesicles have great potential for application in medical processes related to colorectal cancer, but their isolation and characterization techniques, intercellular communication mechanisms, and the effectiveness of their clinical application require further research and exploration.
Collapse
Affiliation(s)
- Yun Song
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China
| | - Min Shi
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China.
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, PR China.
| | - Yugang Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China.
| |
Collapse
|
2
|
Role of tumour-derived exosomes in metastasis. Biomed Pharmacother 2022; 147:112657. [DOI: 10.1016/j.biopha.2022.112657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
|
3
|
Liu P, Zhao G, Zhang L, Gong Y, Gu Y. Atractylenolide I inhibits antibiotic-induced dysbiosis of the intestinal microbiome. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1539. [PMID: 34790745 PMCID: PMC8576645 DOI: 10.21037/atm-21-4656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/21/2021] [Indexed: 11/28/2022]
Abstract
Background Atractylenolide I (AT-I) is an active component that is isolated from Rhizoma Atractylodis macrocephalae and it exerts anti-apoptotic, anti-oxidant, and anti-coagulant properties, and has been widely applied in the treatment of cardiovascular and cerebrovascular diseases in China. This study aimed to investigate the effects and possible mechanism of AT-I on intestinal dysbacteriosis in a mouse model. Methods Mice dysbacteriosis models were established and treated with AT-I, and the intestinal microbiome of the mice were compared. Using antibiotics-induced bacterial elimination in an intestinal dysbacteriosis-associated xenograft model, the gut microbiota-mediated anti-tumor mechanism was investigated. Results The intestinal microbiome was changed in the dysbacteriosis mice compared to the control mice, and AT-I could affect the intestinal microbiome of the dysbacteriosis mice. Manipulation of gut bacteria in the intestines of the dysbacteriosis-associated xenograft model further confirmed that the inhibition of tumor progression by AT-I was mediated by the gut microbiota, and that the underlying mechanism involves down-regulation of TLR4/MyD88/NF-κB signaling. AT-I repressed the phosphorylation of p65-NF-κB as well as the downstream cytokines, IL-6 and IL-1β, in dysbacteriosis mice. Conclusions AT-I may inhibit dysbacteriosis by affecting the intestinal microbiome via the regulation of TLR4/MyD88/NF-κB signaling. The present study provides a basis for the application of AT-I as an alternative medication for treating gastrointestinal disorders.
Collapse
Affiliation(s)
- Penglin Liu
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Proctology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Gang Zhao
- Department of Proctology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lize Zhang
- Department of Proctology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuxia Gong
- Department of Anorectal Surgery, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Yunfei Gu
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Li J, Gao N, Gao Z, Liu W, Pang B, Dong X, Li Y, Fan T. The Emerging Role of Exosomes in Cancer Chemoresistance. Front Cell Dev Biol 2021; 9:737962. [PMID: 34778252 PMCID: PMC8581179 DOI: 10.3389/fcell.2021.737962] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Chemoresistance is an impending challenge in cancer treatment. In recent years, exosomes, a subtype of extracellular vesicles with a diameter of 40-150 nm in bloodstream and other bio-fluids, have attracted increasing interest. Exosomes contain proteins, nucleic acids, and lipids, which act as important signaling molecules. Many reports indicate that exosomes play critical roles in chemoresistance through intercellular interactions, including drug removal from cells, transfer of drug resistance phenotypes to other cancer cells, and the increase in plastic stem cell subsets. Exosomes can reflect the physiological and pathological state of parent cells. Owing to their elevated stability, specificity, and sensitivity, exosomes are served as biomarkers in liquid biopsies to monitor cancer chemoresistance, progression, and recurrence. This review summarizes the exosome-mediated mechanisms of cancer chemoresistance, as well as its role in reversing and monitoring chemoresistance. The scientific and technological challenges and future applications of exosomes are also explored.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, School of Basic Medical Science, Zhengzhou University, Zhengzhou, China
| | - Na Gao
- Department of Pharmacology, School of Basic Medical Science, Zhengzhou University, Zhengzhou, China
| | - Zhengfan Gao
- Department of Pharmacology, School of Basic Medical Science, Zhengzhou University, Zhengzhou, China
| | - Wei Liu
- Department of Pharmacology, School of Basic Medical Science, Zhengzhou University, Zhengzhou, China
| | - Bairen Pang
- St George Hospital, St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Xingli Dong
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yong Li
- Department of Pharmacology, School of Basic Medical Science, Zhengzhou University, Zhengzhou, China.,St George Hospital, St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Tianli Fan
- Department of Pharmacology, School of Basic Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Exploring the Inflammatory Pathogenesis of Colorectal Cancer. Diseases 2021; 9:diseases9040079. [PMID: 34842660 PMCID: PMC8628792 DOI: 10.3390/diseases9040079] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer is one of the most commonly diagnosed cancers worldwide. Traditionally, mechanisms of colorectal cancer formation have focused on genetic alterations including chromosomal damage and microsatellite instability. In recent years, there has been a growing body of evidence supporting the role of inflammation in colorectal cancer formation. Multiple cytokines, immune cells such T cells and macrophages, and other immune mediators have been identified in pathways leading to the initiation, growth, and metastasis of colorectal cancer. Outside the previously explored mechanisms and pathways leading to colorectal cancer, initiatives have been shifted to further study the role of inflammation in pathogenesis. Inflammatory pathways have also been linked to some traditional risk factors of colorectal cancer such as obesity, smoking and diabetes, as well as more novel associations such as the gut microbiome, the gut mycobiome and exosomes. In this review, we will explore the roles of obesity and diet, smoking, diabetes, the microbiome, the mycobiome and exosomes in colorectal cancer, with a specific focus on the underlying inflammatory and metabolic pathways involved. We will also investigate how the study of colon cancer from an inflammatory background not only creates a more holistic and inclusive understanding of this disease, but also creates unique opportunities for prevention, early diagnosis and therapy.
Collapse
|
6
|
Xie J, Zhu J, Pang J, Ma Y. HLA complex group 11 is involved in colorectal carcinoma cisplatin resistance via the miR-214-5p/SOX4 axis. Oncol Lett 2021; 22:535. [PMID: 34079592 PMCID: PMC8157335 DOI: 10.3892/ol.2021.12796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to investigate the roles and potential mechanisms of long non-coding RNA HLA complex group 11 (HCG11) in colorectal carcinoma. Reverse transcription-quantitative PCR was used to detect HCG11 expression in clinical tissues and survival analysis was performed to identify its prognostic value. In order to investigate its specific biological functions in colorectal carcinoma, the transfection technique was used for the knockdown and overexpression of HCG11. Dual-luciferase reporter gene and RNA pull-down assays were used to identify the binding association between HCG11 and microRNA (miR)-214-5p. Western blot analysis was used to detect the mechanism of epithelial-mesenchymal transition (EMT) regulation in tumor cells in the pathway downstream of HCG11. HCG11 level was high in colorectal carcinoma tissues, which was associated with poor patient prognosis; however, chemotherapy may prevent the upregulation of HCG11 in colorectal carcinoma. HCG11-knockdown suppressed the proliferation, migration and chemotherapeutic sensitivity of colorectal carcinoma cells, whereas HCG11-overexpression enhanced chemotherapeutic sensitivity. miR-214-5p was revealed to be a target gene, and upon direct interaction, a negative regulator of HCG11 in colorectal carcinoma cells. Inhibition of miR-214-5p reversed the restriction of HCG11 on the malignant activity of colorectal carcinoma cells, while miR-214-5p mediated the chemotherapy-related intracellular EMT pathway. In conclusion, HCG11 is a vital oncogene of colorectal carcinoma involved in mediating the chemotherapeutic resistance of tumors.
Collapse
Affiliation(s)
- Jianping Xie
- Department of Gastroenterology, The First Affiliated Hospital of Yangtze University, The First People's Hospital of Jingzhou, Jingzhou, Hubei 434000, P.R. China
| | - Jiaping Zhu
- Department of Clinical Laboratory, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang Central Hospital, Xiangyang, Hubei 441000, P.R. China
| | - Jie Pang
- Department of Clinical Laboratory, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang Central Hospital, Xiangyang, Hubei 441000, P.R. China
| | - Yaping Ma
- Department of Clinical Laboratory, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang Central Hospital, Xiangyang, Hubei 441000, P.R. China
| |
Collapse
|
7
|
Al Sharif S, Pinto DO, Mensah GA, Dehbandi F, Khatkar P, Kim Y, Branscome H, Kashanchi F. Extracellular Vesicles in HTLV-1 Communication: The Story of an Invisible Messenger. Viruses 2020; 12:E1422. [PMID: 33322043 PMCID: PMC7763366 DOI: 10.3390/v12121422] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) infects 5-10 million people worldwide and is the causative agent of adult T-cell leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) as well as other inflammatory diseases. A major concern is that the most majority of individuals with HTLV-1 are asymptomatic carriers and that there is limited global attention by health care officials, setting up potential conditions for increased viral spread. HTLV-1 transmission occurs primarily through sexual intercourse, blood transfusion, intravenous drug usage, and breast feeding. Currently, there is no cure for HTLV-1 infection and only limited treatment options exist, such as class I interferons (IFN) and Zidovudine (AZT), with poor prognosis. Recently, small membrane-bound structures, known as extracellular vesicles (EVs), have received increased attention due to their potential to carry viral cargo (RNA and proteins) in multiple pathogenic infections (i.e., human immunodeficiency virus type I (HIV-1), Zika virus, and HTLV-1). In the case of HTLV-1, EVs isolated from the peripheral blood and cerebral spinal fluid (CSF) of HAM/TSP patients contained the viral transactivator protein Tax. Additionally, EVs derived from HTLV-1-infected cells (HTLV-1 EVs) promote functional effects such as cell aggregation which enhance viral spread. In this review, we present current knowledge surrounding EVs and their potential role as immune-modulating agents in cancer and other infectious diseases such as HTLV-1 and HIV-1. We discuss various features of EVs that make them prime targets for possible vehicles of future diagnostics and therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110, USA; (S.A.S.); (D.O.P.); (G.A.M.); (F.D.); (P.K.); (Y.K.); (H.B.)
| |
Collapse
|
8
|
Liu R, Zhao W, Wang H, Wang J. Long Noncoding RNA LINC01207 Promotes Colon Cancer Cell Proliferation and Invasion by Regulating miR-3125/TRIM22 Axis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1216325. [PMID: 33299853 PMCID: PMC7704133 DOI: 10.1155/2020/1216325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 12/03/2022]
Abstract
Increasing study has validated that long noncoding RNAs (lncRNAs) are involved in the growth and metastasis of colon cancer. LINC01207 has been reported to play vital roles in certain types of cancer, while the precise function of LINC01207 in the progression of colon cancer remains unclear. The objective of this study was to investigate the effect of LINC01207 on the growth and metastasis of colon cancer cells and to explore the underlying mechanism. We found that the expression of LINC01207 was significantly upregulated in colon adenocarcinoma tissues compared with normal tissues by the GEPIA database. Notably, silencing of LINC01207 significantly suppressed the proliferation, migration, and invasion abilities of SW480 and HT-29 cells. Mechanistically, our data demonstrated that LINC01207 could sponge miR-3125 in colon cancer cells. Moreover, miR-3125 could directly target TRIM22 and negatively regulate its expression. Rescue assays revealed that miR-3125 inhibitor or TRIM22 overexpression significantly reversed the repressive role of LINC01207 knockdown in colon cancer cell proliferation and invasion. In conclusion, LINC01207 exerts an oncogenic role in the progression of colon cancer by absorbing miR-3125 to modulating TRIM22 expression.
Collapse
Affiliation(s)
- Ronghong Liu
- Department of Nutrition Section, North China Petroleum Bureau General Hospital, Renqiu 062552, China
| | - Wenzeng Zhao
- Department of General Surgery, North China Petroleum Bureau General Hospital, Renqiu 062552, China
| | - Haigang Wang
- Department of General Surgery, North China Petroleum Bureau General Hospital, Renqiu 062552, China
| | - Jianbing Wang
- Department of Cardiovascular Medicine, North China Petroleum Bureau General Hospital, Renqiu 062552, China
| |
Collapse
|
9
|
Hermanowicz JM, Kwiatkowska I, Pawlak D. Important players in carcinogenesis as potential targets in cancer therapy: an update. Oncotarget 2020; 11:3078-3101. [PMID: 32850012 PMCID: PMC7429179 DOI: 10.18632/oncotarget.27689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
The development of cancer is a problem that has accompanied mankind for years. The growing number of cases, emerging drug resistance, and the need to reduce the serious side effects of pharmacotherapy are forcing scientists to better understand the complex mechanisms responsible for the initiation, promotion, and progression of the disease. This paper discusses the modulation of the particular stages of carcinogenesis by selected physiological factors, including: acetylcholine (ACh), peroxisome proliferator-activated receptors (PPAR), fatty acid-binding proteins (FABPs), Bruton's tyrosine kinase (Btk), aquaporins (AQPs), insulin-like growth factor-2 (IGF-2), and exosomes. Understanding their role may contribute to the development of more effective and safer therapies based on new binding sites.
Collapse
Affiliation(s)
- Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
| | - Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
| |
Collapse
|
10
|
Tran TT, Tran PH. Lead Compounds in the Context of Extracellular Vesicle Research. Pharmaceutics 2020; 12:E716. [PMID: 32751565 PMCID: PMC7463631 DOI: 10.3390/pharmaceutics12080716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023] Open
Abstract
Studies of small extracellular vesicles (sEVs), known as exosomes, have been flourishing in the last decade with several achievements, from advancing biochemical knowledge to use in biomedical applications. Physiological changes of sEVs due to the variety of cargos they carry undoubtedly leave an impression that affects the understanding of the mechanism underlying disease and the development of sEV-based shuttles used for treatments and non-invasive diagnostic tools. Indeed, the remarkable properties of sEVs are based on their nature, which helps shield them from recognition by the immune system, protects their payload from biochemical degradation, and contributes to their ability to translocate and convey information between cells and their inherent ability to target disease sites such as tumors that is valid for sEVs derived from cancer cells. However, their transport, biogenesis, and secretion mechanisms are still not thoroughly clear, and many ongoing investigations seek to determine how these processes occur. On the other hand, lead compounds have been playing critical roles in the drug discovery process and have been recently employed in studies of the biogenesis and secretion of sEVs as external agents, affecting sEV release and serving as drug payloads in sEV drug delivery systems. This article gives readers an overview of the roles of lead compounds in these two research areas of sEVs, the rising star in studies of nanoscale medicine.
Collapse
Affiliation(s)
- Thao T.D. Tran
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
- The Faculty of Pharmacy, Duy Tan University, Danang 550000, Vietnam
| | - Phuong H.L. Tran
- Deakin University, School of Medicine, IMPACT, Institute for innovation in Physical and Mental health and Clinical Translation, Geelong, Australia
| |
Collapse
|
11
|
Cao C, Zhang J, Yang C, Xiang L, Liu W. Silencing of long noncoding RNA UCA1 inhibits colon cancer invasion, migration and epithelial-mesenchymal transition and tumour formation by upregulating miR-185-5p in vitro and in vivo. Cell Biochem Funct 2020; 38:176-184. [PMID: 31989667 DOI: 10.1002/cbf.3454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/09/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022]
Abstract
Colon cancer is the third most common malignancy in the world. Long-chain noncoding RNA urothelial carcinoma-associated 1 (UCA1) was abnormally expressed in colon cancer and participated in colon cancer by regulating multiple miRNAs. This study further explored the molecular mechanism of UCA1 in the development of colon cancer from both in vitro and in vivo. The results showed that UCA1 was highly expressed in colon cancer cells, while miR-185-5p was low expressed. Bioinformatics analysis showed that miR-185-5p was a target of UCA1, while MAPK14 was a target of miR-185-5p. Knockdown of UCA1 with shRNA (sh-UCA1) resulted in a significant increase in miR-185-5p and a significant decrease in MAPK14. In addition, sh-UCA1 inhibited invasion, migration and epithelial-mesenchymal transformation of colon cancer cells. Western blotting also showed that sh-UCA1 inactivated the MAPKAPK2/HSP27 pathway. Furthermore, animal studies have revealed that sh-UCA1 inhibited tumour formation in vivo and improved the survival rate of mice. Collectively, these results suggest that silencing UCA1 may inhibit the carcinogenesis and metastasis of colon cancer in vitro and in vivo by modulating miR-185-5p/MAPK14/MAPKAPK2/HSP27 axis. SIGNIFICANCE OF THE STUDY: Colon cancer is the third largest malignant tumour worldwide. This study elucidated the role of urothelial carcinoma-associated 1 (UCA1) in colon cancer cells and its molecular mechanism. The present study suggests that silencing UCA1 may inhibit the invasion, migration, epithelial-mesenchymal transformation and tumour formation of colon cancer by upregulating miR-185-5p in vitro and in vivo. In summary, this study provides a new strategy for targeted therapy of colon cancer.
Collapse
Affiliation(s)
- Chen Cao
- Department of Hyroid and Breast Surgery, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junhui Zhang
- Department of Hyroid and Breast Surgery, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanhua Yang
- Department of Hyroid and Breast Surgery, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lili Xiang
- Department of Hyroid and Breast Surgery, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenneng Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|