1
|
Satish S, Athavale M, Kharkar PS. Targeted therapies for Glioblastoma multiforme (GBM): State-of-the-art and future prospects. Drug Dev Res 2024; 85:e22261. [PMID: 39485272 DOI: 10.1002/ddr.22261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 11/03/2024]
Abstract
Glioblastoma multiforme (GBM) remains one of the most aggressive and lethal forms of brain cancer, characterized by rapid growth and resistance to conventional therapies. The present review explores the latest advancements in targeted therapies for GBM, emphasizing the critical role of the blood-brain barrier (BBB), blood-brain-tumor barrier, tumor microenvironment, and genetic mutations in influencing treatment outcomes. The impact of the key hallmarks of GBM, for example, chemoresistance, hypoxia, and the presence of glioma stem cells on the disease progression and multidrug resistance are discussed in detail. The major focus is on the innovative strategies aimed at overcoming these challenges, such as the use of monoclonal antibodies, small-molecule inhibitors, and novel drug delivery systems designed to enhance drug penetration across the BBB. Additionally, the potential of immunotherapy, specifically immune checkpoint inhibitors and vaccine-based approaches, to improve patient prognosis was explored. Recent clinical trials and preclinical studies are reviewed to provide a comprehensive overview of the current landscape and future prospects in GBM treatment. The integration of advanced computational models and personalized medicine approaches is also considered, aiming to tailor therapies to individual patient profiles for better efficacy. Overall, while significant progress has been made in understanding and targeting the complex biology of GBM, continued research and clinical innovation are imperative to develop more effective and sustainable therapeutic options for patients battling this formidable disease.
Collapse
Affiliation(s)
- Smera Satish
- Sathgen Therapeutics, Godavari Biorefineries Limited, Somaiya Group Company, Mumbai, India
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Maithili Athavale
- Sathgen Therapeutics, Godavari Biorefineries Limited, Somaiya Group Company, Mumbai, India
| | - Prashant S Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
2
|
Zhang Y, Jiang Y, Shang K, Ge C, Fang J, Liu S. Updated pharmaceutical progress on plant antibiotic rhein and its analogs: Bioactivities, structure-activity relationships and future perspectives. Bioorg Med Chem 2024; 113:117895. [PMID: 39259985 DOI: 10.1016/j.bmc.2024.117895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Rhein, as a plant antibiotic, demonstrates a broad spectrum of pharmacological effects. Nevertheless, its limited water solubility, low bioavailability, and potential hepatotoxicity and nephrotoxicity making it difficult to directly become a medicine, thereby imposing significant constraints on its clinical application. In recent decades, extensive researches have been proceeded on the multifaceted structural modifications of rhein, resulting in notable improvements on pharmacological activities and druggabilities. This review offers a comprehensive overview and advanced update on the biological potential and structural-activity relationships (SARs) of various rhein derivatives, delineating the sites of structural modification and corresponding activity trends of rhein derivatives for future.
Collapse
Affiliation(s)
- Yindi Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 42008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, China
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 42008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, China
| | - Kaiqi Shang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 42008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, China
| | - Chengyu Ge
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 42008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, China
| | - Jing Fang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 42008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, China.
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 42008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Changsha, China.
| |
Collapse
|
3
|
Wan M, Gan A, Dai J, Lin F, Wang R, Wu B, Yan T, Jia Y. Rhein induces apoptosis of AGS and MGC803 cells by regulating the Ras/PI3K/AKT and p38/MAPK signaling pathway. J Pharm Pharmacol 2024:rgae115. [PMID: 39393789 DOI: 10.1093/jpp/rgae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/18/2024] [Indexed: 10/13/2024]
Abstract
OBJECTIVES Rhein is one of the main bioactive compounds in the Polygonaceae plant, and has been proven to have anti-cancer activity in some reports. But the mechanism of Rhein in the treatment of gastric cancer (GC) is limited reported. In this research, network pharmacology combined with in vitro experiments was used for systematically studying the mechanism of Rhein. METHODS Network pharmacology confirmed the major effect signaling pathway and key targets of Rhein in the treatment of GC. Cell viability assay, colony formation assay, fluorescence probe assay, apoptosis assay, western blot and qRT-PCR verified the mechanism of Rhein in the treatment of GC cells (AGS and MGC803 cells). KEY FINDINGS The results showed that Rhein significantly induced the apoptosis process of AGS and MGC803 cells by regulating the Ras/phosphoinositide-3 kinase (PI3K)/protein kinase B (AKT) and the p38/mitogen-activated protein kinase signaling pathways. The AKT activator (SC79) and p38 inhibitor (SB202190) inhibited Rhein-induced apoptosis. CONCLUSIONS All results proved that Rhein could be recognized as a potential natural drug for the treatment of GC.
Collapse
Affiliation(s)
- Meiqi Wan
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Anna Gan
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Jun Dai
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Fei Lin
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Ruixuan Wang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Bo Wu
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Tingxu Yan
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Ying Jia
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| |
Collapse
|
4
|
Xu J, Zhang J, Chen W, Ni X. The tumor-associated fibrotic reactions in microenvironment aggravate glioma chemoresistance. Front Oncol 2024; 14:1388700. [PMID: 38863628 PMCID: PMC11165034 DOI: 10.3389/fonc.2024.1388700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
Malignant gliomas are one of the most common and lethal brain tumors with poor prognosis. Most patients with glioblastoma (GBM) die within 2 years of diagnosis, even after receiving standard treatments including surgery combined with concomitant radiotherapy and chemotherapy. Temozolomide (TMZ) is the first-line chemotherapeutic agent for gliomas, but the frequent acquisition of chemoresistance generally leads to its treatment failure. Thus, it's urgent to investigate the strategies for overcoming glioma chemoresistance. Currently, many studies have elucidated that cancer chemoresistance is not only associated with the high expression of drug-resistance genes in glioma cells but also can be induced by the alterations of the tumor microenvironment (TME). Numerous studies have explored the use of antifibrosis drugs to sensitize chemotherapy in solid tumors, and surprisingly, these preclinical and clinical attempts have exhibited promising efficacy in treating certain types of cancer. However, it remains unclear how tumor-associated fibrotic alterations in the glioma microenvironment (GME) mediate chemoresistance. Furthermore, the possible mechanisms behind this phenomenon are yet to be determined. In this review, we have summarized the molecular mechanisms by which tumor-associated fibrotic reactions drive glioma transformation from a chemosensitive to a chemoresistant state. Additionally, we have outlined antitumor drugs with antifibrosis functions, suggesting that antifibrosis strategies may be effective in overcoming glioma chemoresistance through TME normalization.
Collapse
Affiliation(s)
- Jiaqi Xu
- The Second Clinical Medical School, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ji Zhang
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wubing Chen
- Department of Radiology, Wuxi Fifth People’s Hospital, Jiangnan University, Wuxi, China
| | - Xiangrong Ni
- The Second Clinical Medical School, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Plastic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Pan Y, Hou H, Zhou B, Gao J, Gao F. Hydroxamic acid hybrids: Histone deacetylase inhibitors with anticancer therapeutic potency. Eur J Med Chem 2023; 262:115879. [PMID: 37875056 DOI: 10.1016/j.ejmech.2023.115879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023]
Abstract
Histone deacetylases (HDACs), a class of enzymes responsible for the removal of acetyl functional groups from the lysine residues in the amino-terminal tails of core histones, play a critical role in the modulation of chromatin architecture and the regulation of gene expression. Dysregulation of HDAC expression has been closely associated with the development of various cancers. Histone deacetylase inhibitors (HDACis) could regulate diverse cellular pathways, cause cell cycle arrest, and promote programmed cell death, making them promising avenues for cancer therapy with potent efficacy and favorable toxicity profiles. Hybrid molecules incorporating two or more pharmacophores in one single molecule, have the potential to simultaneously inhibit two distinct cancer targets, potentially overcome drug resistance and minimize drug-drug interactions. Notably, hydroxamic acid hybrids, exemplified by fimepinostat and tinostamustine as potential HDACis, could exert the anticancer effects through induction of apoptosis, differentiation, and growth arrest in cancer cells, representing useful scaffolds for the discovery of novel HDACis. The purpose of this review is to summarize the current scenario of hydroxamic acid hybrids as HDACis with anticancer therapeutic potential developed since 2020 to facilitate further rational exploitation of more effective candidates.
Collapse
Affiliation(s)
- Yuan Pan
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Haodong Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Bo Zhou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jingyue Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
6
|
Gabano E, Gariboldi MB, Caron G, Ermondi G, Marras E, Vallaro M, Ravera M. Application of the anthraquinone drug rhein as an axial ligand in bifunctional Pt(IV) complexes to obtain antiproliferative agents against human glioblastoma cells. Dalton Trans 2022; 51:6014-6026. [PMID: 35352739 DOI: 10.1039/d2dt00235c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Octahedral Pt(IV) prodrugs are an effective way to combine cisplatin-like moieties and a second drug to obtain selective and stimuli responsive bifunctional antiproliferative compounds. Recently, two bifunctional Pt(IV) complexes have shown interesting in vitro and in vivo effects in glioblastoma, the most aggressive primary brain tumor. An interesting observation indicates that 4,5-dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carboxylic acid (rhein) can inhibit in vivo glioma tumor progression. Furthermore, a prodrug in which cisplatin was combined with two molecules of rhein showed a potency higher than that of cisplatin toward cisplatin-resistant lung carcinoma cells. However, the high lipophilicity of this type of complex affects their solubility and bioavailability. To overcome these limits, in the present work, three Pt(IV) derivatives were obtained by differently linking one molecule of rhein and one acetato ligand at the axial position to a cisplatin core. The complexes proved to be similar to or more potent than the parent cisplatin and rhein, and the reference drug temozolomide on two human glioblastoma cell lines (U87-MG and T98G). They retained their activity under hypoxia and caused a significant reduction in the motility of both cell lines, which can be related to their ability to inhibit MMP2 and MMP9 matrix metalloproteinases. Finally, physicochemical and computational studies indicated that these Pt(IV) derivatives are more prone than rhein to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| | - Marzia Bruna Gariboldi
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università dell'Insubria, via Dunant 3, Varese, Italy
| | - Giulia Caron
- CASSMedChem, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Via Quarello 15, 10135 Torino, Italy
| | - Giuseppe Ermondi
- CASSMedChem, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Via Quarello 15, 10135 Torino, Italy
| | - Emanuela Marras
- Dipartimento di Biotecnologie e Scienze della Vita (DBSV), Università dell'Insubria, via Dunant 3, Varese, Italy
| | - Maura Vallaro
- CASSMedChem, Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università di Torino, Via Quarello 15, 10135 Torino, Italy
| | - Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
7
|
A Tumor Suppressor Gene, N-myc Downstream-Regulated Gene 1 (NDRG1), in Gliomas and Glioblastomas. Brain Sci 2022; 12:brainsci12040473. [PMID: 35448004 PMCID: PMC9029626 DOI: 10.3390/brainsci12040473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/24/2022] [Accepted: 04/02/2022] [Indexed: 12/04/2022] Open
Abstract
The development of potent and selective therapeutic approaches to glioblastoma (GBM) requires the identification of molecular pathways that critically regulate the survival and proliferation of GBM. Glioblastoma stem-like cells (GSCs) possess stem-cell-like properties, self-renewal, and differentiation into multiple neural cell lineages. From a clinical point of view, GSCs have been reported to resist radiation and chemotherapy. GSCs are influenced by the microenvironment, especially the hypoxic condition. N-myc downstream-regulated gene 1 (NDRG1) is a tumor suppressor with the potential to suppress the proliferation, invasion, and migration of cancer cells. Previous studies have reported that deregulated expression of NDRG1 affects tumor growth and clinical outcomes of patients with GBM. This literature review aimed to clarify the critical role of NDRG1 in tumorigenesis and acquirement of resistance for anti-GBM therapies, further to discussing the possibility and efficacy of NDRG1 as a novel target of treatment for GBM. The present review was conducted by searching the PubMed and Scopus databases. The search was conducted in February 2022. We review current knowledge on the regulation and signaling of NDRG1 in neuro-oncology. Finally, the role of NDRG1 in GBM and potential clinical applications are discussed.
Collapse
|
8
|
Gao F, Li R, Wei PF, Ou L, Li M, Bai Y, Luo WJ, Fan Z. Synergistic anticancer effects of everolimus (RAD001) and Rhein on gastric cancer cells via phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway. Bioengineered 2022; 13:6332-6342. [PMID: 35209807 PMCID: PMC8973710 DOI: 10.1080/21655979.2021.2005988] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 01/26/2023] Open
Abstract
Everolimus (RAD001) is a mTOR inhibitor and is widely used for the treatment of gastric cancer (GC). Evidence suggests that Rhein has anticancer effect on GC. But the synergistic effect and mechanism of RAD001 and Rhein combination on GC is not clear. The current study aims to clarify the combination of RAD001 and Rhein in GC treatment. We found Rhein dose-dependently repressed MGC-803 cell viability (50% inhibition concentration (IC50) value = 94.26 μM). Rhein (80 μM) significantly suppressed GC cell proliferation and invasion. RAD001 dose-dependently repressed MGC-803 cells viability (IC50 value = 45.41 nM). The combination of Rhein and RAD001 repressed MGC-803 cells viability, invasion, and proliferation compared to the administration of Rhein or RAD001 alone. Protein levels of epithelial-mesenchymal transition (EMT)-related molecules E-cadherin, N-cadherin and Vimentin expressions were significantly affected by the combination of Rhein and RAD001. The combination of Rhein and RAD001 significantly facilitated cell apoptosis and up-regulated expressions of cell apoptosis and cycle-related protein p53, cyclin-dependent kinase 4 (CDK4) and cyclin D1 compared to the administration of Rhein or RAD001 alone. Moreover, the combination of Rhein and RAD001 repressed the expressions of phosphorylation-phosphoinositide-3-kinase (p-PI3K), p-protein kinase B (p-AKT) and p-mammalian target of rapamycin (p-mTOR). Finally, the combination of RAD001 and Rhein significantly decreased tumor weight and volume, suppressed the expressions of p-PI3K, p-Akt and p-mTOR, and repressed cell proliferation marker Ki-67 expression, which exerted synergistic cancer prevention in GC in vivo. Overall, the combination of Rhein and RAD001 exert synergistic cancer prevention in GC via PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Feng Gao
- Teaching and Research Office of Chinese Pharmacy, The College of Pharmacy of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Rui Li
- Department of Emergency, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Pei-Feng Wei
- The Office of Drug Clinical Trial Institution, The Second Affiliated Hospital of Shaanxi University of traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Li Ou
- Teaching and Research Office of Chinese Pharmacy, The College of Pharmacy of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Min Li
- Teaching and Research Office of Chinese Pharmacy, The College of Pharmacy of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yang Bai
- The Office of Drug Clinical Trial Institution, The Second Affiliated Hospital of Shaanxi University of traditional Chinese Medicine, Xianyang, Shaanxi, China
| | - Wen-Jia Luo
- Teaching and Research Office of Chinese Pharmacy, The College of Pharmacy of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Zheng Fan
- Department of Gastroenterology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang712000, Shaanxi, China
| |
Collapse
|
9
|
An innovative rhein-matrine cocrystal: Synthesis, characterization, formation mechanism and pharmacokinetic study. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Zheng Y, Liu Z, Yang X, Liu L, Ahn KS. An updated review on the potential antineoplastic actions of oleuropein. Phytother Res 2021; 36:365-379. [PMID: 34808696 DOI: 10.1002/ptr.7325] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Oleuropein is an ester of elenolic acid and hydroxytyrosol (3, 4-dihydroxyphenylethanol). It is a phenolic compound and the most luxuriant in olives. The detailed information related to the anticancer effects of oleuropein was collected from the internet database PubMed/Medline, ResearchGate, Web of Science, Wiley Online Library, and Cnki using appropriate keywords until the end of October 2021. Oleuropein has been shown to have antioxidant, anticancer, antiinflammatory, cardioprotective, neuroprotective, and hepatoprotective effects. Previous studies also revealed that oleuropein could effectively inhibit the malignant progression of esophageal cancer, gastric cancer, breast cancer, lung cancer, liver cancer, pancreatic cancer, ovarian cancer, prostate cancer, and cervical cancer. Recently, the role of oleuropein in inhibiting tumor cell proliferation, invasion, and migration and inducing tumor cell apoptosis has gained extensive attention. In this review, we have summarized the latest research progress related to the antioncogenic mechanisms and the potential role of oleuropein in targeting different human malignancies. Based on these findings, it can be concluded that oleuropein can function as a promising chemopreventive and chemotherapeutic agent against cancer, but its more detailed anticancer effects and underlying mechanisms need to be further validated in future preclinical as well as clinical studies.
Collapse
Affiliation(s)
- Yudong Zheng
- Department of Pharmacology, Basic Medical School of Yangtze University, Jingzhou, China
| | - Zhenzhen Liu
- Department of Pharmacology, Basic Medical School of Yangtze University, Jingzhou, China
| | - Xiulan Yang
- Department of Pharmacology, Basic Medical School of Yangtze University, Jingzhou, China
| | - Lian Liu
- Department of Pharmacology, Basic Medical School of Yangtze University, Jingzhou, China
| | - Kwang Seok Ahn
- Kyung Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Li GM, Chen JR, Zhang HQ, Cao XY, Sun C, Peng F, Yin YP, Lin Z, Yu L, Chen Y, Tang YL, Xie XF, Peng C. Update on Pharmacological Activities, Security, and Pharmacokinetics of Rhein. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:4582412. [PMID: 34457021 PMCID: PMC8387172 DOI: 10.1155/2021/4582412] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
Rhein, belonging to anthraquinone compounds, is one of the main active components of rhubarb and Polygonum multiflorum. Rhein has a variety of pharmacological effects, such as cardiocerebral protective effect, hepatoprotective effect, nephroprotective effect, anti-inflammation effect, antitumor effect, antidiabetic effect, and others. The mechanism is interrelated and complex, referring to NF-κB, PI3K/Akt/MAPK, p53, mitochondrial-mediated signaling pathway, oxidative stress signaling pathway, and so on. However, to some extent, its clinical application is limited by its poor water solubility and low bioavailability. Even more, rhein has potential liver and kidney toxicity. Therefore, in this paper, the pharmacological effects of rhein and its mechanism, pharmacokinetics, and safety studies were reviewed, in order to provide reference for the development and application of rhein.
Collapse
Affiliation(s)
- Gang-Min Li
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jun-Ren Chen
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Hui-Qiong Zhang
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiao-Yu Cao
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Chen Sun
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Fu Peng
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan-Peng Yin
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Ziwei Lin
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Lei Yu
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yan Chen
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yun-Li Tang
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Guangxi University of Traditional Chinese Medicine, Nanning 530200, China
| | - Xiao-Fang Xie
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Cheng Peng
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
12
|
Peng X, Chen J, Li L, Sun Z, Liu J, Ren Y, Huang J, Chen J. Efficient Synthesis and Bioevaluation of Novel Dual Tubulin/Histone Deacetylase 3 Inhibitors as Potential Anticancer Agents. J Med Chem 2021; 64:8447-8473. [PMID: 34097389 DOI: 10.1021/acs.jmedchem.1c00413] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Novel dual HDAC3/tubulin inhibitors were designed and efficiently synthesized by combining the pharmacophores of SMART (tubulin inhibitor) and MS-275 (HDAC inhibitor), among which compound 15c was found to be the most potent and balanced HDAC3/tubulin dual inhibitor with high HDAC3 activity (IC50 = 30 nM) and selectivity (SI > 1000) as well as excellent antiproliferative potency against various cancer cell lines, including an HDAC-resistant gastric cancer cell line (YCC3/7) with IC50 values in the range of 30-144 nM. Compound 15c inhibited B16-F10 cancer cell migration and colony formation. In addition, 15c demonstrated significant in vivo antitumor efficacy in a B16-F10 melanoma tumor model with a better TGI (70.00%, 10 mg/kg) than that of the combination of MS-275 and SMART. Finally, 15c presented a safe cardiotoxicity profile and did not cause nephro-/hepatotoxicity. Collectively, this work shows that compound 15c represents a novel tubulin/HDAC3 dual-targeting agent deserving further investigation as a potential anticancer agent.
Collapse
Affiliation(s)
- Xiaopeng Peng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jingxuan Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ling Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhiqiang Sun
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jin Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yichang Ren
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junli Huang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
13
|
Cheng L, Chen Q, Pi R, Chen J. A research update on the therapeutic potential of rhein and its derivatives. Eur J Pharmacol 2021; 899:173908. [PMID: 33515540 DOI: 10.1016/j.ejphar.2021.173908] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/16/2022]
Abstract
Rhein is one of the anthraquinones components of Rheum. It shows excellent clinical efficacy and is widely used in the management of several disease conditions including tumors, inflammation, diabetic nephropathy, and viral infections. In this review, we summarize the recent studies on the pharmacological activities of rhein and its derivatives, as well as their association with different diseases and possible mechanisms based on our previous review. This review serves as an updated and a supplement to our previous report highlighting the use of rhein in nanotechnology. It also serves as a reference study and offers an overall picture of the use of rhein and its derivatives in nanotechnology.
Collapse
Affiliation(s)
- Li Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, China
| | - Qiuhe Chen
- College of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Rongbiao Pi
- School of Medicine, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jingkao Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
14
|
Recent progress on HDAC inhibitors with dual targeting capabilities for cancer treatment. Eur J Med Chem 2020; 208:112831. [DOI: 10.1016/j.ejmech.2020.112831] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/31/2020] [Accepted: 09/05/2020] [Indexed: 12/11/2022]
|
15
|
Kunadis E, Lakiotaki E, Korkolopoulou P, Piperi C. Targeting post-translational histone modifying enzymes in glioblastoma. Pharmacol Ther 2020; 220:107721. [PMID: 33144118 DOI: 10.1016/j.pharmthera.2020.107721] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/08/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults, and the most lethal form of glioma, characterized by variable histopathology, aggressiveness and poor clinical outcome and prognosis. GBMs constitute a challenge for oncologists because of their molecular heterogeneity, extensive invasion, and tendency to relapse. Glioma cells demonstrate a variety of deregulated genomic pathways and extensive interplay with epigenetic alterations. Epigenetic modifications have emerged as essential players in GBM research, with biomarker potential for tumor classification and prognosis and for drug targeting. Histone posttranslational modifications (PTMs) are crucial regulators of chromatin architecture and gene expression, playing a pivotal role in malignant transformation, tumor development and progression. Alteration in the expression of genes coding for lysine and arginine methyltransferases (G9a, SUV39H1 and SETDB1) and acetyltransferases and deacetylases (KAT6A, SIRT2, SIRT7, HDAC4, 6, 9) contribute to GBM pathogenesis. In addition, proteins of the sumoylation pathway are upregulated in GBM cell lines, including E1 (SAE1), E2 (Ubc9) components, and a SUMO-specific protease (SENP1). Preclinical and clinical studies are currently in progress targeting epigenetic enzymes in gliomas, including a new generation of histone deacetylase (HDAC), protein arginine methyltransferase (PRMT) and bromodomain (BRD) inhibitors. Herein, we provide an update on recent advances in glioma epigenetic research, focusing on the role of histone modifications and the use of epigenetic therapy as a valid treatment option for glioblastoma.
Collapse
Affiliation(s)
- Elena Kunadis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Eleftheria Lakiotaki
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Penelope Korkolopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece.
| |
Collapse
|
16
|
Hydroxamic acid hybrids as the potential anticancer agents: An Overview. Eur J Med Chem 2020; 205:112679. [PMID: 32791404 DOI: 10.1016/j.ejmech.2020.112679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
|
17
|
Henamayee S, Banik K, Sailo BL, Shabnam B, Harsha C, Srilakshmi S, VGM N, Baek SH, Ahn KS, Kunnumakkara AB. Therapeutic Emergence of Rhein as a Potential Anticancer Drug: A Review of Its Molecular Targets and Anticancer Properties. Molecules 2020; 25:molecules25102278. [PMID: 32408623 PMCID: PMC7288145 DOI: 10.3390/molecules25102278] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/02/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022] Open
Abstract
According to the World Health Organization (WHO), cancer is the second-highest cause of mortality in the world, and it kills nearly 9.6 million people annually. Besides the fatality of the disease, poor prognosis, cost of conventional therapies, and associated side-effects add more burden to patients, post-diagnosis. Therefore, the search for alternatives for the treatment of cancer that are safe, multi-targeted, effective, and cost-effective has compelled us to go back to ancient systems of medicine. Natural herbs and plant formulations are laden with a variety of phytochemicals. One such compound is rhein, which is an anthraquinone derived from the roots of Rheum spp. and Polygonum multiflorum. In ethnomedicine, these plants are used for the treatment of inflammation, osteoarthritis, diabetes, and bacterial and helminthic infections. Increasing evidence suggests that this compound can suppress breast cancer, cervical cancer, colon cancer, lung cancer, ovarian cancer, etc. in both in vitro and in vivo settings. Recent studies have reported that this compound modulates different signaling cascades in cancer cells and can prevent angiogenesis and progression of different types of cancers. The present review highlights the cancer-preventing and therapeutic properties of rhein based on the available literature, which will help to extend further research to establish the chemoprotective and therapeutic roles of rhein compared to other conventional drugs. Future pharmacokinetic and toxicological studies could support this compound as an effective anticancer agent.
Collapse
Affiliation(s)
- Sahu Henamayee
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Bano Shabnam
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
| | - Satti Srilakshmi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER, Guwahati), Assam 781125, India; (S.S.); (N.V.)
| | - Naidu VGM
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER, Guwahati), Assam 781125, India; (S.S.); (N.V.)
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea;
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Correspondence: (K.S.A.); or (A.B.K.); Tel.: +82-2-961-2316 (K.S.A.)
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Assam 781039, India; (S.H.); (K.B.); (B.L.S.); (B.S.); (C.H.)
- Correspondence: (K.S.A.); or (A.B.K.); Tel.: +82-2-961-2316 (K.S.A.)
| |
Collapse
|