1
|
Sun B, Lovell JF, Zhang Y. Current development of cabazitaxel drug delivery systems. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1854. [PMID: 36161272 DOI: 10.1002/wnan.1854] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/23/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022]
Abstract
The second-generation taxane cabazitaxel has been clinically approved for the treatment of metastatic castration-resistant prostate cancer after docetaxel failure. Compared with the first-generation taxanes paclitaxel and docetaxel, cabazitaxel has potent anticancer activity and is less prone to drug resistance due to its lower affinity for the P-gp efflux pump. The relatively high hydrophobicity of cabazitaxel and the poor aqueous colloidal stability of the commercial formulation, following its preparation for injection, presents opportunities for new cabazitaxel formulations with improved features. This review provides an overview of cabazitaxel drug formulations and hydrophobic taxane drug delivery systems in general, and particularly focuses on emerging cabazitaxel delivery systems discovered in the past 5 years. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Boyang Sun
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Zhang Y, Xia Q, Wu T, He Z, Li Y, Li Z, Hou X, He Y, Ruan S, Wang Z, Sun J, Feng N. A novel multi-functionalized multicellular nanodelivery system for non-small cell lung cancer photochemotherapy. J Nanobiotechnology 2021; 19:245. [PMID: 34391438 PMCID: PMC8364713 DOI: 10.1186/s12951-021-00977-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A red blood cell membrane (RBCm)-derived drug delivery system allows prolonged circulation of an antitumor treatment and overcomes the issue of accelerated blood clearance induced by PEGylation. However, RBCm-derived drug delivery systems are limited by low drug-loading capacities and the lack of tumor-targeting ability. Thus, new designs of RBCm-based delivery systems are needed. RESULTS Herein, we designed hyaluronic acid (HA)-hybridized RBCm (HA&RBCm)-coated lipid multichambered nanoparticles (HA&RBCm-LCNPs) to remedy the limitations of traditional RBCm drug delivery systems. The inner core co-assembled with phospholipid-regulated glycerol dioleate/water system in HA&RBCm-LCNPs met the required level of blood compatibility for intravenous administration. These newly designed nanocarriers had a honeycomb structure with abundant spaces that efficiently encapsulated paclitaxel and IR780 for photochemotherapy. The HA&RBCm coating allowed the nanocarriers to overcome the reticuloendothelial system barrier and enhanced the nanocarriers specificity to A549 cells with high levels of CD44. These properties enhanced the combinatorial antitumor effects of paclitaxel and IR780 associated with microtubule destruction and the mitochondrial apoptotic pathway. CONCLUSIONS The multifunctional HA&RBCm-LCNPs we designed expanded the functionality of RBCm and resulted in a vehicle for safe and efficient antitumor treatment.
Collapse
Affiliation(s)
- Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing Xia
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong Wu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zehui He
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yanyan Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhe Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuefeng Hou
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuanzhi He
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuyao Ruan
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhi Wang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia Sun
- Teaching Experiment Center, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Tan H, Tian Y, Yang H, Liu Z, Liang X, Li B, Cheng W. Oxygen-sufficient lipid nanobubbles combined with UTMD for enhanced sonodynamic therapy of Hep-G2 cells. J Biomed Mater Res B Appl Biomater 2021; 109:1796-1806. [PMID: 33838006 DOI: 10.1002/jbm.b.34839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022]
Abstract
Sonodynamic therapy (SDT) is an emerging noninvasive therapeutic approach, which could penetrate deep-seated tissues and activate sonosensitizer to produce cytotoxic reactive oxygen species (ROS). Nevertheless, the hypoxic tumor microenvironment significantly limits the efficiency of SDT due to its oxygen-consumption treatment principle. To break hypoxia-induced resistance and improve the efficacy of SDT, we developed shell-core structured oxygen-sufficient nanobubbles(NBs), which were designed with a lipid shell loaded the sonosensitizer IR780 and a gas core loaded with oxygen. With the aid of ultrasound-targeted microbubble destruction (UTMD), IR780@O2 NBs not only make sonosensitizers more effectively enriched at the tumor site in a controlled manner, but also directly mediate oxygen release and provide sufficient oxygen for producing more ROS to induce cell apoptosis. Thus, IR780@O2 NBs can efficiently inhibit the proliferation of Hep-G2 cells under ultrasound exposure. What is more, IR780@O2 NBs have a potential for contrast enhanced ultrasound (CEUS) imaging. We believe that our oxygen-sufficient NBs trigged by UTMD could be an ideal therapeutic and imaging system for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Haoyan Tan
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huajing Yang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhao Liu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xitian Liang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bo Li
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|