1
|
Dell'Anno I, Morani F, Patergnani S, Daga A, Pinton P, Giorgi C, Mutti L, Gemignani F, Landi S. Thonzonium bromide inhibits progression of malignant pleural mesothelioma through regulation of ERK1/2 and p38 pathways and mitochondrial uncoupling. Cancer Cell Int 2024; 24:226. [PMID: 38951927 PMCID: PMC11218145 DOI: 10.1186/s12935-024-03400-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/08/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Malignant Pleural Mesothelioma (MPM) is a rare malignancy with a poor prognosis. Current therapies are unsatisfactory and novel cures are urgently needed. In a previous drug screening, we identified thonzonium bromide (TB) as one of the most active compounds against MPM cells. Since the biological effects of TB are poorly known, in this work we departed from some hints of previous studies and investigated several hypotheses. Moreover, we evaluated the efficacy of TB in an in vivo xenograft rodent model. METHODS In vitro assessment was made on five MPM (Mero-14, Mero-25, Ren, NCI-H28, MSTO-211H) and one SV40-immortalized mesothelial cell line (MeT-5A). We evaluated TB ability to affect proliferation, apoptosis, mitochondrial functions and metabolism, and the mevalonate pathway. In vivo assay was carried out on MPM-xenograft NOD-SCID mice (4 mg/kg delivered intraperitoneally, twice a week for 4 weeks) and the overall survival was analysed with Kaplan-Meier curves. RESULTS After TB treatment, we observed the suppression of ERK 1/2 phosphorylation, the increase of BAX expression and p38 phosphorylation. TB affected Ca2+ homeostasis in both mitochondrial and cytosolic compartments, it regulated the mitochondrial functioning, respiration, and ATP production as well as the mevalonate pathway. The in vivo study showed an increased overall survival for TB treated group vs. vehicle control group (P = 0.0076). CONCLUSIONS Both in vitro and in vivo results confirmed the effect of TB on MPM and unravelled novel targets with translational potential.
Collapse
Affiliation(s)
| | | | - Simone Patergnani
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Advanced Therapies (LTTA), Technopole of Ferrara, Ferrara, Italy
| | - Antonio Daga
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Advanced Therapies (LTTA), Technopole of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Advanced Therapies (LTTA), Technopole of Ferrara, Ferrara, Italy
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, USA.
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | | | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
2
|
Ollila-Raj H, Murumägi A, Pellinen T, Arjama M, Sutinen E, Volmonen K, Haikala HM, Kallioniemi O, Mäyränpää MI, Ilonen I. Novel therapeutic approaches for pleural mesothelioma identified by functional ex vivo drug sensitivity testing. Lung Cancer 2023; 178:213-219. [PMID: 36878102 DOI: 10.1016/j.lungcan.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
OBJECTIVES Pleural mesothelioma (PM) is an aggressive malignancy with limited treatment options. The first-line therapy has remained unchanged for two decades and consists of pemetrexed in combination with cisplatin. Immune-checkpoint inhibitors (nivolumab plus ipilimumab) have high response rates, resulting in recent updates in treatment recommendations by the U.S. Food and Drug Administration. However, the overall benefits of combination treatment are modest, suggesting that other targeted therapy options should be investigated. MATERIALS AND METHODS We employed high-throughput drug sensitivity and resistance testing on five established PM cell lines using 527 cancer drugs in a 2D setting. Drugs of the greatest potential (n = 19) were selected for further testing in primary cell models derived from pleural effusions of seven PM patients. RESULTS All established and primary patient-derived PM cell models were sensitive to the mTOR inhibitor AZD8055. Furthermore, another mTOR inhibitor (temsirolimus) showed efficacy in most of the primary patient-derived cells, although a less robust effect was observed when compared with the established cell lines. Most of the established cell lines and all patient-derived primary cells exhibited sensitivity to the PI3K/mTOR/DNA-PK inhibitor LY3023414. The Chk1 inhibitor prexasertib showed activity in 4/5 (80%) of the established cell lines and in 2/7 (29%) of the patient-derived primary cell lines. The BET family inhibitor JQ1 showed activity in four patient-derived cell models and in one established cell line. CONCLUSION mTOR and Chk1 pathways had promising results with established mesothelioma cell lines in an ex vivo setting. In patient-derived primary cells, drugs targeting mTOR pathway in particular showed efficacy. These findings may inform novel treatment strategies for PM.
Collapse
Affiliation(s)
- Hely Ollila-Raj
- Department of Pulmonary Medicine, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Finland.
| | - Astrid Murumägi
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland
| | - Mariliina Arjama
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland
| | - Eva Sutinen
- Department of Pulmonary Medicine, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Finland
| | - Kirsi Volmonen
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Heidi M Haikala
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland; Science for Life Laboratory (SciLifeLab), Department of Oncology and Pathology, Karolinska Institutet, Sweden
| | - Mikko I Mäyränpää
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ilkka Ilonen
- iCAN Digital Precision Cancer Medicine Flagship, Finland; Department of General Thoracic and Esophageal Surgery, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
3
|
Barbarino M, Bottaro M, Spagnoletti L, de Santi MM, Guazzo R, Defraia C, Custoza C, Serio G, Iannelli F, Pesetti M, Aiello R, Rosati D, Zanfrini E, Luzzi L, Bellan C, Giordano A. Analysis of Primary Cilium Expression and Hedgehog Pathway Activation in Mesothelioma Throws Back Its Complex Biology. Cancers (Basel) 2022; 14:5216. [PMID: 36358635 PMCID: PMC9654223 DOI: 10.3390/cancers14215216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 08/06/2023] Open
Abstract
The primary cilium (PC) is a sensory organelle present on the cell surface, modulating the activity of many pathways. Dysfunctions in the PC lead to different pathologic conditions including cancer. Hedgehog signaling (Hh) is regulated by PC and the loss of its control has been observed in many cancers, including mesothelioma. Malignant pleural mesothelioma (MPM) is a fatal cancer of the pleural membranes with poor therapeutic options. Recently, overexpression of the Hh transcriptional activator GL1 has been demonstrated to be associated with poor overall survival (OS) in MPM. However, unlike other cancers, the response to G-protein-coupled receptor smoothened (SMO)/Hh inhibitors is poor, mainly attributable to the lack of markers for patient stratification. For all these reasons, and in particular for the role of PC in the regulation of Hh, we investigated for the first time the status of PC in MPM tissues, demonstrating intra- and inter-heterogeneity in its expression. We also correlated the presence of PC with the activation of the Hh pathway, providing uncovered evidence of a PC-independent regulation of the Hh signaling in MPM. Our study contributes to the understanding MPM heterogeneity, thus helping to identify patients who might benefit from Hh inhibitors.
Collapse
Affiliation(s)
- Marcella Barbarino
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Maria Bottaro
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Laura Spagnoletti
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | | | - Raffaella Guazzo
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Chiara Defraia
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Cosimo Custoza
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Gabriella Serio
- Department of Emergency and Organ Transplantation-DETO, University of Bari, G. Cesare 1 Sq., 70121 Bari, Italy
| | - Francesco Iannelli
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Matilde Pesetti
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Raffaele Aiello
- Toma Institute Srl, Via Cesare Rosaroll 24, 80139 Napoli, Italy
| | - Diletta Rosati
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Edoardo Zanfrini
- Department of Medicine, Surgery and Neurosciences, Siena University Hospital, 53100 Siena, Italy
| | - Luca Luzzi
- Department of Medicine, Surgery and Neurosciences, Siena University Hospital, 53100 Siena, Italy
| | - Cristiana Bellan
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
| | - Antonio Giordano
- Department of Medical Biotechnologies, Siena University, 53100 Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
4
|
Dell’Anno I, Melani A, Martin SA, Barbarino M, Silvestri R, Cipollini M, Giordano A, Mutti L, Nicolini A, Luzzi L, Aiello R, Gemignani F, Landi S. A Drug Screening Revealed Novel Potential Agents against Malignant Pleural Mesothelioma. Cancers (Basel) 2022; 14:2527. [PMID: 35626133 PMCID: PMC9139775 DOI: 10.3390/cancers14102527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
The lack of effective therapies remains one of the main challenges for malignant pleural mesothelioma (MPM). In this perspective, drug repositioning could accelerate the identification of novel treatments. We screened 1170 FDA-approved drugs on a SV40-immortalized mesothelial (MeT-5A) and five MPM (Mero-14, Mero-25, IST-Mes2, NCI-H28 and MSTO-211H) cell lines. Biological assays were carried out for 41 drugs, showing the highest cytotoxicity and for whom there were a complete lack of published literature in MPM. Cytotoxicity and caspase activation were evaluated with commercially available kits and cell proliferation was assayed using MTT assay and by clonogenic activity with standard protocols. Moreover, the five most effective drugs were further evaluated on patient-derived primary MPM cell lines. The most active molecules were cephalomannine, ouabain, alexidine, thonzonium bromide, and emetine. Except for alexidine, these drugs inhibited the clonogenic ability and caspase activation in all cancer lines tested. The proliferation was inhibited also on an extended panel of cell lines, including primary MPM cells. Thus, we suggest that cephalomannine, ouabain, thonzonium bromide, and emetine could represent novel candidates to be repurposed for improving the arsenal of therapeutic weapons in the fight against MPM.
Collapse
Affiliation(s)
- Irene Dell’Anno
- Genetic Unit, Department of Biology, University of Pisa, 56126 Pisa, Italy; (I.D.); (A.M.); (R.S.); (M.C.); (S.L.)
| | - Alessandra Melani
- Genetic Unit, Department of Biology, University of Pisa, 56126 Pisa, Italy; (I.D.); (A.M.); (R.S.); (M.C.); (S.L.)
| | - Sarah A. Martin
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK;
| | - Marcella Barbarino
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (A.G.)
- Translational Oncology, Center for Biotechnology, College of Science and Technology, Temple University, Sbarro Institute for Cancer Research and Molecular Medicine, Philadelphia, PA 19122, USA;
| | - Roberto Silvestri
- Genetic Unit, Department of Biology, University of Pisa, 56126 Pisa, Italy; (I.D.); (A.M.); (R.S.); (M.C.); (S.L.)
| | - Monica Cipollini
- Genetic Unit, Department of Biology, University of Pisa, 56126 Pisa, Italy; (I.D.); (A.M.); (R.S.); (M.C.); (S.L.)
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (A.G.)
- Translational Oncology, Center for Biotechnology, College of Science and Technology, Temple University, Sbarro Institute for Cancer Research and Molecular Medicine, Philadelphia, PA 19122, USA;
| | - Luciano Mutti
- Translational Oncology, Center for Biotechnology, College of Science and Technology, Temple University, Sbarro Institute for Cancer Research and Molecular Medicine, Philadelphia, PA 19122, USA;
| | - Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Luca Luzzi
- Department of Medicine, Surgery and Neurosciences, Siena University Hospital, 53100 Siena, Italy;
| | - Raffaele Aiello
- Toma Institute Srl, Via Cesare Rosaroll 24, 80139 Napoli, Italy;
| | - Federica Gemignani
- Genetic Unit, Department of Biology, University of Pisa, 56126 Pisa, Italy; (I.D.); (A.M.); (R.S.); (M.C.); (S.L.)
| | - Stefano Landi
- Genetic Unit, Department of Biology, University of Pisa, 56126 Pisa, Italy; (I.D.); (A.M.); (R.S.); (M.C.); (S.L.)
| |
Collapse
|
5
|
Hiltbrunner S, Mannarino L, Kirschner MB, Opitz I, Rigutto A, Laure A, Lia M, Nozza P, Maconi A, Marchini S, D’Incalci M, Curioni-Fontecedro A, Grosso F. Tumor Immune Microenvironment and Genetic Alterations in Mesothelioma. Front Oncol 2021; 11:660039. [PMID: 34249695 PMCID: PMC8261295 DOI: 10.3389/fonc.2021.660039] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and fatal disease of the pleural lining. Up to 80% of the MPM cases are linked to asbestos exposure. Even though its use has been banned in the industrialized countries, the cases continue to increase. MPM is a lethal cancer, with very little survival improvements in the last years, mirroring very limited therapeutic advances. Platinum-based chemotherapy in combination with pemetrexed and surgery are the standard of care, but prognosis is still unacceptably poor with median overall survival of approximately 12 months. The genomic landscape of MPM has been widely characterized showing a low mutational burden and the impairment of tumor suppressor genes. Among them, BAP1 and BLM are present as a germline inactivation in a small subset of patients and increases predisposition to tumorigenesis. Other studies have demonstrated a high frequency of mutations in DNA repair genes. Many therapy approaches targeting these alterations have emerged and are under evaluation in the clinic. High-throughput technologies have allowed the detection of more complex molecular events, like chromotripsis and revealed different transcriptional programs for each histological subtype. Transcriptional analysis has also paved the way to the study of tumor-infiltrating cells, thus shedding lights on the crosstalk between tumor cells and the microenvironment. The tumor microenvironment of MPM is indeed crucial for the pathogenesis and outcome of this disease; it is characterized by an inflammatory response to asbestos exposure, involving a variety of chemokines and suppressive immune cells such as M2-like macrophages and regulatory T cells. Another important feature of MPM is the dysregulation of microRNA expression, being frequently linked to cancer development and drug resistance. This review will give a detailed overview of all the above mentioned features of MPM in order to improve the understanding of this disease and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Stefanie Hiltbrunner
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Laura Mannarino
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | | | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Angelica Rigutto
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Alexander Laure
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Michela Lia
- Mesothelioma Unit, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Paolo Nozza
- Department of Pathology, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Antonio Maconi
- Infrastruttura Ricerca Formazione Innovazione (IRFI), Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Sergio Marchini
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Maurizio D’Incalci
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Alessandra Curioni-Fontecedro
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Federica Grosso
- Mesothelioma Unit, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| |
Collapse
|