1
|
Hanley MJ, Yeo KR, Tugnait M, Iwasaki S, Narasimhan N, Zhang P, Venkatakrishnan K, Gupta N. Evaluation of the drug-drug interaction potential of brigatinib using a physiologically-based pharmacokinetic modeling approach. CPT Pharmacometrics Syst Pharmacol 2024; 13:624-637. [PMID: 38288787 PMCID: PMC11015081 DOI: 10.1002/psp4.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Brigatinib is an oral anaplastic lymphoma kinase (ALK) inhibitor approved for the treatment of ALK-positive metastatic non-small cell lung cancer. In vitro studies indicated that brigatinib is primarily metabolized by CYP2C8 and CYP3A4 and inhibits P-gp, BCRP, OCT1, MATE1, and MATE2K. Clinical drug-drug interaction (DDI) studies with the strong CYP3A inhibitor itraconazole or the strong CYP3A inducer rifampin demonstrated that CYP3A-mediated metabolism was the primary contributor to overall brigatinib clearance in humans. A physiologically-based pharmacokinetic (PBPK) model for brigatinib was developed to predict potential DDIs, including the effect of moderate CYP3A inhibitors or inducers on brigatinib pharmacokinetics (PK) and the effect of brigatinib on the PK of transporter substrates. The developed model was able to predict clinical DDIs with itraconazole (area under the plasma concentration-time curve from time 0 to infinity [AUC∞] ratio [with/without itraconazole]: predicted 1.86; observed 2.01) and rifampin (AUC∞ ratio [with/without rifampin]: predicted 0.16; observed 0.20). Simulations using the developed model predicted that moderate CYP3A inhibitors (e.g., verapamil and diltiazem) may increase brigatinib AUC∞ by ~40%, whereas moderate CYP3A inducers (e.g., efavirenz) may decrease brigatinib AUC∞ by ~50%. Simulations of potential transporter-mediated DDIs predicted that brigatinib may increase systemic exposures (AUC∞) of P-gp substrates (e.g., digoxin and dabigatran) by 15%-43% and MATE1 substrates (e.g., metformin) by up to 29%; however, negligible effects were predicted on BCRP-mediated efflux and OCT1-mediated uptake. The PBPK analysis results informed dosing recommendations for patients receiving moderate CYP3A inhibitors (40% brigatinib dose reduction) or inducers (up to 100% increase in brigatinib dose) during treatment, as reflected in the brigatinib prescribing information.
Collapse
Affiliation(s)
- Michael J. Hanley
- Clinical Pharmacology, Takeda Development Center Americas, Inc.LexingtonMassachusettsUSA
| | | | - Meera Tugnait
- Clinical Pharmacology, Cerevel TherapeuticsCambridgeMassachusettsUSA
| | - Shinji Iwasaki
- Global DMPK, Takeda Development Center Americas, Inc.LexingtonMassachusettsUSA
| | | | - Pingkuan Zhang
- Clinical Science, Takeda Development Center Americas, Inc.LexingtonMassachusettsUSA
| | - Karthik Venkatakrishnan
- Quantitative Pharmacology, EMD Serono Research & Development Institute, Inc.BillericaMassachusettsUSA
| | - Neeraj Gupta
- Clinical Pharmacology, Takeda Development Center Americas, Inc.LexingtonMassachusettsUSA
| |
Collapse
|
2
|
Gupta N, Hanley MJ, Griffin RJ, Zhang P, Venkatakrishnan K, Sinha V. Clinical Pharmacology of Brigatinib: A Next-Generation Anaplastic Lymphoma Kinase Inhibitor. Clin Pharmacokinet 2023; 62:1063-1079. [PMID: 37493887 PMCID: PMC10386943 DOI: 10.1007/s40262-023-01284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/27/2023]
Abstract
Brigatinib, a next-generation anaplastic lymphoma kinase (ALK) inhibitor designed to overcome mechanisms of resistance associated with crizotinib, is approved for the treatment of ALK-positive advanced or metastatic non-small cell lung cancer. After oral administration of single doses of brigatinib 30-240 mg, the median time to reach maximum plasma concentration ranged from 1 to 4 h. In patients with advanced malignancies, brigatinib showed dose linearity over the dose range of 60-240 mg once daily. A high-fat meal had no clinically meaningful effect on systemic exposures of brigatinib (area under the plasma concentration-time curve); thus, brigatinib can be administered with or without food. In a population pharmacokinetic analysis, a three-compartment pharmacokinetic model with transit absorption compartments was found to adequately describe brigatinib pharmacokinetics. In addition, the population pharmacokinetic analyses showed that no dose adjustment is required based on body weight, age, race, sex, total bilirubin (< 1.5× upper limit of normal), and mild-to-moderate renal impairment. Data from dedicated phase I trials have indicated that no dose adjustment is required for patients with mild or moderate hepatic impairment, while a dose reduction of approximately 40% (e.g., from 180 to 120 mg) is recommended for patients with severe hepatic impairment, and a reduction of approximately 50% (e.g., from 180 to 90 mg) is recommended when administering brigatinib to patients with severe renal impairment. Brigatinib is primarily metabolized by cytochrome P450 (CYP) 3A, and results of clinical drug-drug interaction studies and physiologically based pharmacokinetic analyses have demonstrated that coadministration of strong or moderate CYP3A inhibitors or inducers with brigatinib should be avoided. If coadministration with a strong or moderate CYP3A inhibitor cannot be avoided, the dose of brigatinib should be reduced by approximately 50% (strong CYP3A inhibitor) or approximately 40% (moderate CYP3A inhibitor), respectively. Brigatinib is a weak inducer of CYP3A in vivo; data from a phase I drug-drug interaction study showed that coadministration of brigatinib 180 mg once daily reduced the oral midazolam area under the plasma concentration-time curve from time zero to infinity by approximately 26%. Brigatinib did not inhibit CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, or CYP2D6 at clinically relevant concentrations in vitro. Exposure-response analyses based on data from the ALTA (ALK in Lung Cancer Trial of AP26113) and ALTA-1L pivotal trials of brigatinib confirm the favorable benefit versus risk profile of the approved titration dosing regimen of 180 mg once daily (after a 7-day lead-in at 90 mg once daily).
Collapse
Affiliation(s)
- Neeraj Gupta
- Takeda Development Center Americas, Inc., Lexington, MA, USA.
- Takeda Development Centers America, Inc., 40 Landsdowne Street, MA, 02139, Cambridge, USA.
| | | | | | - Pingkuan Zhang
- Takeda Development Center Americas, Inc., Lexington, MA, USA
| | - Karthik Venkatakrishnan
- Millennium Pharmaceuticals, Inc., a Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, MA, 02139, Cambridge, USA
- EMD Serono Research and Development Institute, Inc., Billerica, MA, USA
| | - Vikram Sinha
- Takeda Development Center Americas, Inc., Lexington, MA, USA
- Novartis Development Corporation, East Hanover, NJ, USA
| |
Collapse
|