1
|
Sun Z, Liu Y, Hou A, Han A, Yan C, Sun J. Transcriptome and gut microbiota analyses reveal a possible mechanism underlying rifampin-mediated interruption of the larval development of chironomid Propsilocerus akamusi (Diptera: Chironomidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115467. [PMID: 37716071 DOI: 10.1016/j.ecoenv.2023.115467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Chironomids, the most abundant insect group found in freshwater habitats, are known to be pollution tolerate and serve as important bioindicators of contaminant stress. Gut microbiota has recently been shown to potentially provide a number of beneficial services to insect hosts. However, the antibiotic-mediated interruption of chironomid gut microbial community and its subsequent influence on host body are still unclear. In the present study, the effects of rifampin on chironomid larvae were investigated at both transcriptome and microbiome level to assess the relationship between gut bacteria and associated genes. Our data indicated that the rifampin-induced imbalance of gut ecosystem could inhibit the development of chironomid larvae via decreasing the body weight, body length and larval eclosion rate during 96-h treatment. Both the community structure and taxonomic composition were significantly altered due to the invasion of rifampin in digestive tracts. The relative abundance of phylum Deferribacterota and Bacteroidota were dramatically increased with rifampin exposure. A set of genes involved in amino acid synthesis as well as xenobiotic metabolism pathways were greatly changed and proved to have tight correlation with certain genus. Bacterial genus Tyzzerella was positively correlated with detoxifying PaCYP6GF1 and PaCYP9HL1 genes. This study provides a reference for understanding the environmental risks of antibiotic and aims to accelerate new biological insights into the effects of antibiotic on the fitness of chironomids and into the microbe mediated-regulatory mechanism of aquatic insects.
Collapse
Affiliation(s)
- Zeyang Sun
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Yue Liu
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Aoran Hou
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Anqi Han
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Chuncai Yan
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.
| | - Jinsheng Sun
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.
| |
Collapse
|
2
|
Sun Z, Sun W, An J, Xu H, Liu Y, Yan C. Copper and chlorpyrifos stress affect the gut microbiota of chironomid larvae (Propsilocerus akamusi). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114027. [PMID: 36049336 DOI: 10.1016/j.ecoenv.2022.114027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Chironomids are characterized by their ubiquitous distribution, global diversity and tolerant ability to deal with environmental stressors. To our knowledge, this is the first study presenting the gut microbial structure of chironomid larvae and examining the microbial alteration induced by invading chlorpyrifos and copper with different dosages. Lethal bioassay displayed a significantly decreased percentage survival of Propsilocerus akamusi larvae exposed to 800 mg/L copper and 50 μg/L chlorpyrifos at 96 h. Larvae with deficient gut microbiota exhibited a depressed level of glutathione S-transferase activity after stressful exposure. The high-throughput 16S rRNA gene sequencing was adopted to investigate the community structure and it turned out that both copper and chlorpyrifos were able to generate distinguished variations of gut microbiota in the stressor-specific and concentration-dependent manner. Of note, the relative abundance of Comamonas, Stenotrophomonas, and Yersinia remarkably elevated in the presence of copper while chlorpyrifos exposure upregulated the prevalence of certain genera (e.g. Serratia). Flavobacterium was greatly attenuated in chlorpyrifos group with lethal dosage exhibiting more severe impacts. The predicted gene functions of the gut commensals differed between normal samples and those subjected to distinct toxins. Besides, more positive associations and limited modularity of microbial interactions were observed in stressor-challenged larvae, presenting a network with impaired complexity and stability. The appearance of either copper or chlorpyrifos exhibited strong positive correlations with genera belonging to Proteobacteria and Firmicutes. Collectively, this investigation introduces a general outline of gut microbiota obtained from chironomid individuals with latent adaptive tactics to nocuous factors (heavy metal and pesticide), which could build a fundamental basis for us to further explore the protective roles of chironomid gut bacterial colonizers in defending against aquatic contaminants.
Collapse
Affiliation(s)
- Zeyang Sun
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Wenwen Sun
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Jiating An
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Haixuan Xu
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Yue Liu
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China
| | - Chuncai Yan
- College of Life Sciences, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, Tianjin Normal University, Tianjin, China.
| |
Collapse
|
3
|
Pandey AK, Sharma V, Ravi Ram K. Drosophila ecdysone receptor activity-based ex vivo assay to assess the endocrine disruption potential of environmental chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56430-56441. [PMID: 35338461 DOI: 10.1007/s11356-022-19789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Insect pollinators, critical for both agricultural output and the ecosystem, are declining at an alarming levels partly due to human-made chemicals. Majority of environmental chemicals hamper the endocrine function and studies on the same in insects remain neglected. Here, we report a Drosophila-based ex vivo assay system that employs a reproductive tissue from transgenic males carrying a reporter gene (lacZ) downstream of ecdysone receptor response element (EcRE) and permits the evaluation of chemical-mediated activity modulation of all three isoforms of ecdysone receptor, which are critical for male fertility. We show agonistic [plasticizers, cypermethrin, atrazine, methyl parathion, imidacloprid, cadmium chloride, mercuric chloride or 3-(4-methylbenzylidene) camphor] or antagonistic (apigenin, tributyltin chloride) effects or lack of effect thereof (rutin hydrate, dichlorvos, lead acetate, parabens) for seven different classes of environmental chemicals on ecdysone receptor activity reflecting the specificity and sensitivity of the developed ex vivo assay. Exposure to a few of these chemicals in vivo hampers the fertility of Drosophila males, thus linking the observed endocrine disruption to a quantifiable reproductive phenotype. The developed ex vivo assay offers a quick Drosophila-based screening tool for throughput monitoring of environmental chemicals for their ability to hamper the endocrine function of insect pollinators and other invertebrates.
Collapse
Affiliation(s)
- Anuj Kumar Pandey
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Department of Respiratory Medicine, King George's Medical University, Lucknow, 226003, Uttar Pradesh, India
| | - Vandana Sharma
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad , 201002, India
| | - Kristipati Ravi Ram
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad , 201002, India.
| |
Collapse
|
4
|
Kaunisto KM, Roslin T, Forbes MR, Morrill A, Sääksjärvi IE, Puisto AIE, Lilley TM, Vesterinen EJ. Threats from the air: Damselfly predation on diverse prey taxa. J Anim Ecol 2020; 89:1365-1374. [PMID: 32124439 DOI: 10.1111/1365-2656.13184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
To understand the diversity and strength of predation in natural communities, researchers must quantify the total amount of prey species in the diet of predators. Metabarcoding approaches have allowed widespread characterization of predator diets with high taxonomic resolution. To determine the wider impacts of predators, researchers should combine DNA techniques with estimates of population size of predators using mark-release-recapture (MRR) methods, and with accurate metrics of food consumption by individuals. Herein, we estimate the scale of predation exerted by four damselfly species on diverse prey taxa within a well-defined 12-ha study area, resolving the prey species of individual damselflies, to what extent the diets of predatory species overlap, and which fraction of the main prey populations are consumed. We identify the taxonomic composition of diets using DNA metabarcoding and quantify damselfly population sizes by MRR. We also use predator-specific estimates of consumption rates, and independent data on prey emergence rates to estimate the collective predation pressure summed over all prey taxa and specific to their main prey (non-biting midges or chironomids) of the four damselfly species. The four damselfly species collectively consumed a prey mass equivalent to roughly 870 (95% CL 410-1,800) g, over 2 months. Each individual consumed 29%-66% (95% CL 9.4-123) of its body weight during its relatively short life span (2.1-4.7 days; 95% CL 0.74-7.9) in the focal population. This predation pressure was widely distributed across the local invertebrate prey community, including 4 classes, 19 orders and c. 140 genera. Different predator species showed extensive overlap in diets, with an average of 30% of prey shared by at least two predator species. Of the available prey individuals in the widely consumed family Chironomidae, only a relatively small proportion (0.76%; 95% CL 0.35%-1.61%) were consumed. Our synthesis of population sizes, per-capita consumption rates and taxonomic distribution of diets identifies damselflies as a comparatively minor predator group of aerial insects. As the next step, we should add estimates of predation by larger odonate species, and experimental removal of odonates, thereby establishing the full impact of odonate predation on prey communities.
Collapse
Affiliation(s)
- Kari M Kaunisto
- Zoological Museum, Biodiversity Unit, University of Turku, Turku, Finland
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Mark R Forbes
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Andre Morrill
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Ilari E Sääksjärvi
- Zoological Museum, Biodiversity Unit, University of Turku, Turku, Finland
| | - Anna I E Puisto
- Zoological Museum, Biodiversity Unit, University of Turku, Turku, Finland.,Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Thomas M Lilley
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Eero J Vesterinen
- Zoological Museum, Biodiversity Unit, University of Turku, Turku, Finland.,Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Jokšas K, Stakėnienė R, Raudonytė-Svirbutavičienė E. On the effectiveness of tributyltin ban: Distribution and changes in butyltin concentrations over a 9-year period in Klaipėda Port, Lithuania. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109515. [PMID: 31437731 DOI: 10.1016/j.ecoenv.2019.109515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/02/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
This study provides an insight on a long-term butyltin pressure, spatio-temporal changes and current tributyltin distribution in the Klaipėda Port sediments. Moreover, it examines whether the restrictions on tributyltin use led to a decreased pollution in the area. Changes over a 9-year period in tributyltin and its metabolites concentrations were analyzed in surface sediments from semi-enclosed bays of the Port. Reduction in organotin level was observed after tributyltin ban came into force: tributyltin concentration reached 3000 ng Sn g-1 d.w. in 2005 whereas 1793 ng Sng-1 d.w. was found to be the highest tributyltin concentration in 2013. The highest contamination was detected in the zones with ship maintenance activity. As late as in 2013, the latter areas still exhibited fresh tributyltin input while the progress of organotin degradation has been observed for other sampling stations along the Port.
Collapse
Affiliation(s)
- Kęstutis Jokšas
- SRI Nature Research Centre, Institute of Geology and Geography, Akademijos Str. 2, LT-08412, Vilnius, Lithuania
| | - Rimutė Stakėnienė
- SRI Nature Research Centre, Institute of Geology and Geography, Akademijos Str. 2, LT-08412, Vilnius, Lithuania
| | | |
Collapse
|
6
|
Vesterinen EJ, Puisto AIE, Blomberg AS, Lilley TM. Table for five, please: Dietary partitioning in boreal bats. Ecol Evol 2018; 8:10914-10937. [PMID: 30519417 PMCID: PMC6262732 DOI: 10.1002/ece3.4559] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/03/2023] Open
Abstract
Differences in diet can explain resource partitioning in apparently similar, sympatric species. Here, we analyzed 1,252 fecal droppings from five species (Eptesicus nilssonii, Myotis brandtii, M. daubentonii, M. mystacinus, and Plecotus auritus) to reveal their dietary niches using fecal DNA metabarcoding. We identified nearly 550 prey species in 13 arthropod orders. Two main orders (Diptera and Lepidoptera) formed the majority of the diet for all species, constituting roughly 80%-90% of the diet. All five species had different dietary assemblages. We also found significant differences in the size of prey species between the bat species. Our results on diet composition remain mostly unchanged when using either read counts as a proxy for quantitative diet or presence-absence data, indicating a strong biological pattern. We conclude that although bats share major components in their ecology (nocturnal life style, insectivory, and echolocation), species differ in feeding behavior, suggesting bats may have distinctive evolutionary strategies. Diet analysis helps illuminate life history traits of various species, adding to sparse ecological knowledge, which can be utilized in conservation planning.
Collapse
Affiliation(s)
- Eero J. Vesterinen
- Biodiversity UnitUniversity of TurkuTurkuFinland
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
| | | | - Anna S. Blomberg
- Biodiversity UnitUniversity of TurkuTurkuFinland
- Department of BiologyUniversity of TurkuTurkuFinland
| | - Thomas M. Lilley
- Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
- Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
7
|
Vesterinen EJ, Ruokolainen L, Wahlberg N, Peña C, Roslin T, Laine VN, Vasko V, Sääksjärvi IE, Norrdahl K, Lilley TM. What you need is what you eat? Prey selection by the batMyotis daubentonii. Mol Ecol 2016; 25:1581-94. [DOI: 10.1111/mec.13564] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 01/08/2016] [Accepted: 01/26/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Eero J. Vesterinen
- Department of Biology; University of Turku; Vesilinnantie 1 FI-20014 Turku Finland
- Spatial Foodweb Ecology Group; Department of Agricultural Sciences; University of Helsinki; Latokartanonkaari 5 FI-00014 Helsinki Finland
| | - Lasse Ruokolainen
- Department of Biosciences; University of Helsinki; Viikinkaari 1 FI-00014 Helsinki Finland
| | - Niklas Wahlberg
- Department of Biology; University of Turku; Vesilinnantie 1 FI-20014 Turku Finland
- Department of Biology; Lund University; Sölvegatan 35 223 62 Lund Sweden
| | - Carlos Peña
- Department of Biology; University of Turku; Vesilinnantie 1 FI-20014 Turku Finland
| | - Tomas Roslin
- Spatial Foodweb Ecology Group; Department of Agricultural Sciences; University of Helsinki; Latokartanonkaari 5 FI-00014 Helsinki Finland
- Department of Ecology; Swedish University of Agricultural Sciences; Box 7044 750 07 Uppsala Sweden
| | - Veronika N. Laine
- Department of Animal Ecology; Netherlands Institute of Ecology (NIOO-KNAW); PO Box 50 6700AB Wageningen The Netherlands
| | - Ville Vasko
- Department of Biology; University of Turku; Vesilinnantie 1 FI-20014 Turku Finland
| | - Ilari E. Sääksjärvi
- Department of Biology; University of Turku; Vesilinnantie 1 FI-20014 Turku Finland
| | - Kai Norrdahl
- Department of Biology; University of Turku; Vesilinnantie 1 FI-20014 Turku Finland
| | - Thomas M. Lilley
- Department of Biology; University of Turku; Vesilinnantie 1 FI-20014 Turku Finland
- Biology Department; Bucknell University; 1 Dent Drive Lewisburg PA 17837 USA
| |
Collapse
|
8
|
Hooton L, Dzal Y, Veselka N, Fenton M. Polychlorinated biphenyls (PCBs): impact on bat activity and foraging behaviour along the upper Hudson River, New York. CAN J ZOOL 2016. [DOI: 10.1139/cjz-2015-0162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sediments of the upper Hudson River, New York, USA, contain polychlorinated biphenyls (PCBs). Consequently, elevated levels of PCBs have been found in the tissues of bats and their insect prey along this region. However, it is not clear whether bat activity and foraging behaviour have been affected. To assess possible effects of PCBs on bat activity and foraging behaviour, we measured the activity of little brown bats (Myotis lucifugus (LeConte, 1831)) and hoary bats (Lasiurus cinereus (Palisot de Beauvois, 1796)) along the upper Hudson River, as well as abundance of insect prey at the same locations. We also measured foraging duration and distances travelled by radio-tagged M. lucifugus. We found that bat activity and insect abundance did not differ with PCB concentration. We did, however, find that foraging behaviour along the Hudson River differed from a control site. Specifically, M. lucifugus foraging along PCB-contaminated areas of the Hudson River travelled shorter distances from their roosts and spent less time foraging than bats at an uncontaminated site. Our results show that while bats roost and forage in areas historically exposed to PCBs, this exposure has not adversely affected bat activity, foraging behaviour, or abundance of insect prey.
Collapse
Affiliation(s)
- L.A. Hooton
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Y.A. Dzal
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - N. Veselka
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - M.B. Fenton
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|
9
|
|
10
|
Next generation sequencing of fecal DNA reveals the dietary diversity of the widespread insectivorous predator Daubenton's Bat (Myotis daubentonii) in Southwestern Finland. PLoS One 2013; 8:e82168. [PMID: 24312405 PMCID: PMC3842304 DOI: 10.1371/journal.pone.0082168] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/31/2013] [Indexed: 12/22/2022] Open
Abstract
Understanding predator-prey dynamics is a fundamental task in the evaluation of the adaptive capacities of species. However, direct observations or morphological identification of fecal remains do not offer an effective way to study the dietary ecology of elusive species, such as nocturnal insectivorous bats. However, recent advances in molecular techniques have opened a new method for identifying prey species from fecal samples. In this study, we amplified species-specific mitochondrial COI fragments from fecal DNA extractions from 34 individual Daubenton’s bats (Myotis daubentonii) collected between 2008 and 2010 from southwestern Finland. Altogether, 128 different species of prey were identified based on a comprehensive local DNA reference library. In our study area, Daubenton’s bats feed most frequently on insects of the orders Diptera (found in the diet of 94% individuals), Trichoptera (69%) and Lepidoptera (63%). The most frequent dipteran family in the diet was Chironomidae, which was found in 31 of 34 individuals. Most common prey species were chironomids Microtendipes pedellus (found in 50% of bats), Glyptotendipes cauliginellus (44%), and Procladius ferrugineus (41%). For the first time, an accurate species level list of the diet of the insectivorous Daubenton’s bat (Myotis daubentonii) in Finland is presented. We report a generally applicable method for describing the arthropod diet of vertebrate predators. We compare public databases to a national database to highlight the importance of a local reference database.
Collapse
|
11
|
Laine VN, Lilley TM, Norrdahl K, Primmer CR. Population Genetics of Daubenton's Bat (Myotis daubentonii) in the Archipelago Sea, SW Finland. ANN ZOOL FENN 2013. [DOI: 10.5735/085.050.0505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Lilley TM, Ruokolainen L, Meierjohann A, Kanerva M, Stauffer J, Laine VN, Atosuo J, Lilius EM, Nikinmaa M. Resistance to oxidative damage but not immunosuppression by organic tin compounds in natural populations of Daubenton's bats (Myotis daubentonii). Comp Biochem Physiol C Toxicol Pharmacol 2013; 157:298-305. [PMID: 23369694 DOI: 10.1016/j.cbpc.2013.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 11/29/2022]
Abstract
The acute toxicity of organic tin compounds (OTCs) has been studied in detail. However, due to their complex nature, very little is known about species-specific methods of accumulation and consequences for food-webs. Chironomids, on which e.g. Daubenton's bats feed, may act as vectors for the transport of organic tin compounds from aquatic to terrestrial ecosystems. Bats are prone to environmental toxins because of their longevity and their ecological role as top predators. Organic tin compounds are associated with increased formation of reactive oxygen species and associated oxidative damage as well as suppression of immune function. The present paper investigates whether the OTC, tributyltin (TBT) and its metabolite, dibutyltin (DBT), accumulate in natural populations of Daubenton's bats and whether TBT-associated effects are seen in general body condition, redox balance, redox enzyme activities, associated oxidative damage of red blood cells and complement function. We discovered the concentration of bat fur DBT correlated with local marine sediment TBT concentrations. However, we did not find a correlation between the explanatory factors, bat fur DBT and marine sediment TBT concentrations, and several physiological and physical response variables apart from complement activity. Higher DBT concentrations resulted in weaker complement activity and thus a weaker immune response. Although the observed physiological effects in the present study were not strongly correlated to butyltin concentrations in fur or sediment, the result is unique for natural populations so far and raises interesting questions for future ecotoxicological studies.
Collapse
Affiliation(s)
- T M Lilley
- Section of Biology, University of Turku, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|