1
|
Yang X, Zhang Y, Lai JL, Luo XG, Han MW, Zhao SP, Zhu YB. Analysis of the biodegradation and phytotoxicity mechanism of TNT, RDX, HMX in alfalfa (Medicago sativa). CHEMOSPHERE 2021; 281:130842. [PMID: 34023765 DOI: 10.1016/j.chemosphere.2021.130842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to reveal the mechanism underlying the toxicity of TNT (trinitrotoluene), RDX (cyclotrimethylene trinitroamine), and HMX (cyclotetramethylene tetranitramine) explosives pollution in plants. Here, the effects of exposure to these three explosives were examined on chlorophyll fluorescence, antioxidant enzyme activity, and the metabolite spectrum in alfalfa (Medicago sativa) plants. The degradation rates for TNT, RDX, and HMX by alfalfa were 26.8%, 20.4%, and 18.4%, respectively, under hydroponic conditions. TNT caused damage to the microstructure of the plant roots and inhibited photosynthesis, whereas RDX and HMX induced only minor changes. Exposure to any of the three explosives caused disturbances in the oxidase system. Non-targeted metabolomics identified a total of 6185 metabolites. TNT exposure induced the appearance of 609 differentially expressed metabolites (189 upregulated, 420 downregulated), RDX exposure induced 197 differentially expressed metabolites (155 upregulated and 42 downregulated), and HMX induced 234 differentially expressed metabolites (132 upregulated and 102 downregulated). Of these differentially expressed metabolites, lipids and lipid-like molecules were the main metabolites induced by explosives poisoning. TNT mainly caused significant changes in the alanine, aspartate, and glutamate metabolism metabolic pathways, RDX mainly caused disorders in the arginine biosynthesis metabolic pathway, and HMX disrupted the oxidative phosphorylation metabolic pathway. Taken together, the results show that exposure to TNT, RDX, and HMX leads to imbalances in plant photosynthetic characteristics and antioxidant enzyme systems, changes the basic metabolism of plants, and has significant ecotoxicity effects.
Collapse
Affiliation(s)
- Xu Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jin-Long Lai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education of, SWUST, Mianyang, 621010, China.
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education of, SWUST, Mianyang, 621010, China
| | - Meng-Wei Han
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - San-Ping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Yong-Bing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| |
Collapse
|
2
|
Remote Sensing of Explosives-Induced Stress in Plants: Hyperspectral Imaging Analysis for Remote Detection of Unexploded Threats. REMOTE SENSING 2019. [DOI: 10.3390/rs11151827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Explosives contaminate millions of hectares from various sources (partial detonations, improper storage, and release from production and transport) that can be life-threatening, e.g., landmines and unexploded ordnance. Exposure to and uptake of explosives can also negatively impact plant health, and these factors can be can be remotely sensed. Stress induction was remotely sensed via a whole-plant hyperspectral imaging system as two genotypes of Zea mays, a drought-susceptible hybrid and a drought-tolerant hybrid, and a forage Sorghum bicolor were grown in a greenhouse with one control group, one group maintained at 60% soil field capacity, and a third exposed to 250 mg kg−1 Royal Demolition Explosive (RDX). Green-Red Vegetation Index (GRVI), Photochemical Reflectance Index (PRI), Modified Red Edge Simple Ratio (MRESR), and Vogelmann Red Edge Index 1 (VREI1) were reduced due to presence of explosives. Principal component analyses of reflectance indices separated plants exposed to RDX from control and drought plants. Reflectance of Z. mays hybrids was increased from RDX in green and red wavelengths, while reduced in near-infrared wavelengths. Drought Z. mays reflectance was lower in green, red, and NIR regions. S. bicolor grown with RDX reflected more in green, red, and NIR wavelengths. The spectra and their derivatives will be beneficial for developing explosive-specific indices to accurately identify plants in contaminated soil. This study is the first to demonstrate potential to delineate subsurface explosives over large areas using remote sensing of vegetation with aerial-based hyperspectral systems.
Collapse
|
3
|
Rylott EL, Bruce NC. Right on target: using plants and microbes to remediate explosives. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1051-1064. [PMID: 31056922 DOI: 10.1080/15226514.2019.1606783] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
While the immediate effect of explosives in armed conflicts is frequently in the public eye, until recently, the insidious, longer-term corollaries of these toxic compounds in the environment have gone largely unnoticed. Now, increased public awareness and concern are factors behind calls for more effective remediation solutions to these global pollutants. Scientists have been working on bioremediation projects in this area for several decades, characterizing genes, biochemical detoxification pathways, and field-applicable plant species. This review covers the progress made in understanding the fundamental biochemistry behind the detoxification of explosives, including new shock-insensitive explosive compounds; how field-relevant plant species have been characterized and genetically engineered; and the major roles that endophytic and rhizospheric microorganisms play in the detoxification of organic pollutants such as explosives.
Collapse
Affiliation(s)
- Elizabeth L Rylott
- Centre for Novel Agricultural Products, Department of Biology, University of York , York , UK
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York , York , UK
| |
Collapse
|
4
|
Zhang L, Rylott EL, Bruce NC, Strand SE. Genetic modification of western wheatgrass (Pascopyrum smithii) for the phytoremediation of RDX and TNT. PLANTA 2019; 249:1007-1015. [PMID: 30488285 DOI: 10.1007/s00425-018-3057-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
Transgenic western wheatgrass degrades the explosive RDX and detoxifies TNT. Contamination, from the explosives, hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX), and 2, 4, 6-trinitrotoluene (TNT), especially on live-fire training ranges, threatens environmental and human health. Phytoremediation is an approach that could be used to clean-up explosive pollution, but it is hindered by inherently low in planta RDX degradation rates, and the high phytotoxicity of TNT. The bacterial genes, xplA and xplB, confer the ability to degrade RDX in plants, and a bacterial nitroreductase gene nfsI enhances the capacity of plants to withstand and detoxify TNT. While the previous studies have used model plant species to demonstrate the efficacy of this technology, trials using plant species able to thrive in the challenging environments found on military training ranges are now urgently needed. Perennial western wheatgrass (Pascopyrum smithii) is a United States native species that is broadly distributed across North America, well-suited for phytoremediation, and used by the US military to re-vegetate military ranges. Here, we present the first report of the genetic transformation of western wheatgrass. Plant lines transformed with xplA, xplB, and nfsI removed significantly more RDX from hydroponic solutions and retained much lower, or undetectable, levels of RDX in their leaf tissues when compared to wild-type plants. Furthermore, these plants were also more resistant to TNT toxicity, and detoxified more TNT than wild-type plants. This is the first study to engineer a field-applicable grass species capable of both RDX degradation and TNT detoxification. Together, these findings present a promising biotechnological approach to sustainably contain, remove RDX and TNT from training range soil and prevent groundwater contamination.
Collapse
Affiliation(s)
- Long Zhang
- Department of Civil and Environmental Engineering, University of Washington, Box 355014, Seattle, WA, 98195-5014, USA
| | - Elizabeth L Rylott
- Department of Biology, Centre for Novel Agricultural Products, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Neil C Bruce
- Department of Biology, Centre for Novel Agricultural Products, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Stuart E Strand
- Department of Civil and Environmental Engineering, University of Washington, Box 355014, Seattle, WA, 98195-5014, USA.
| |
Collapse
|
5
|
Via SM, Zinnert JC, Young DR. Multiple metrics quantify and differentiate responses of vegetation to composition B. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:56-64. [PMID: 27483131 DOI: 10.1080/15226514.2016.1216080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Quantifying vegetation response to explosive compounds has focused predominantly on morphological impacts and uptake efficiency. A more comprehensive understanding of the total impacts of explosives on vegetation can be gained using a multivariate approach. We hypothesized that multiple variables representing morphological and physiological responses will more clearly differentiate species and treatments than any single variable. Individuals of three plant species were placed in soils contaminated with Composition B, which comprises 60% hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 40% 2,4,6-trinitrotoluene (TNT), and grown for 2 months. Response metrics used included photosynthetic operation, water relations, growth characteristics, as well as nitrogen and carbon concentrations and isotopic compositions. Individual metrics showed high variability in response across the three species tested. Water relations and nitrogen isotopic composition exhibited the most consistent response across species. By comparing multiple variables simultaneously, better separation of both species and exposure was observed. The inclusion of novel metrics can reinforce previously established concepts and provide a new perspective. Additionally, the inclusion of various other metrics can greatly increase the ability to identify and differentiate particular groups. By using multivariate analyses and standard vegetation metrics, new aspects of the vegetation response to explosive compounds can be identified.
Collapse
Affiliation(s)
- Stephen M Via
- a Department of Biology , Virginia Commonwealth University , Richmond , VA , USA
| | - Julie C Zinnert
- a Department of Biology , Virginia Commonwealth University , Richmond , VA , USA
| | - Donald R Young
- a Department of Biology , Virginia Commonwealth University , Richmond , VA , USA
| |
Collapse
|