1
|
Custer CM, Dummer PM, Etterson MA, Haselman JT, Schultz S, Karouna-Renier N, Matson C. Per- and Polyfluoroalkyl Substances in the Duluth, Minnesota Area: Exposure to and Biomarker Responses in Tree Swallows Relative to Known Fire-Fighting Foam Sources. TOXICS 2024; 12:660. [PMID: 39330588 PMCID: PMC11435444 DOI: 10.3390/toxics12090660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Tree swallow nest boxes were deployed at sites proximal to two putative aqueous film forming foam (AFFF) sources in the Duluth, MN area, as well as along the St. Louis River and a reference lake for comparative purposes in 2019, 2020 and 2021. The two AFFF sites were the current Duluth Air National Guard Base (ANG) and the Lake Superior College Emergency Response Training Center. Between 13 and 40 per- and polyfluoroalkyl substances (PFAS), depending on year, were detected and quantified in tree swallow egg, nestling carcasses, and stomach contents. Assessments were made of oxidative stress and ethoxyresorufin-O-dealkylase activity in liver tissue, thyroid hormone levels in plasma and thyroid glands, DNA damage in red blood cells, and two measures of immune response (haptoglobin-like activity and immunoglobulin) in plasma of the nestlings. Additionally, other contaminants, such as polychlorinated biphenyls, legacy organochlorine pesticides, and trace elements, were assessed at sites with no previous data. Total egg PFAS concentrations at the ANG site and north of that site were 30-40 times higher than at the reference lake, while nestling PFAS concentrations were 10-15 times higher. In contrast, the St. Louis River sites had slightly, but non-statistically significant, elevated egg and nestling PFAS concentrations relative to the reference lake (2-5 times higher). One PFAS, perfluorohexane sulfonate (PFHxS), was higher, as a proportion of total PFAS, at sites with a known AFFF source compared to the reference lake, as well as compared to sites along the St. Louis River with mainly urban and industrial sources of PFAS. The ratio of total carboxylates to total sulfonates also distinguished between PFAS sources. There were few to no differences in biomarker responses among sites, and no association with PFAS exposure.
Collapse
Affiliation(s)
- Christine M Custer
- Upper Midwest Environmental Sciences Center, U.S. Geological Survey, 2630 Fanta Reed Road, La Crosse, WI 54603, USA
| | - Paul M Dummer
- Upper Midwest Environmental Sciences Center, U.S. Geological Survey, 2630 Fanta Reed Road, La Crosse, WI 54603, USA
| | - Matthew A Etterson
- U.S. EPA, Office of Research and Development, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Jonathan T Haselman
- U.S. EPA, Office of Research and Development, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Sandra Schultz
- Eastern Ecological Science Center at Patuxent, U.S. Geological Survey, 12100 Beech Forest Rd., Laurel, MD 20708, USA
| | - Natalie Karouna-Renier
- Eastern Ecological Science Center at Patuxent, U.S. Geological Survey, 12100 Beech Forest Rd., Laurel, MD 20708, USA
| | - Cole Matson
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
2
|
Custer CM, Custer TW, Dummer PM, Schultz S, Karouna-Renier N, Tseng CY, Matson CW. Exposure to and Biomarker Responses From Legacy and Emerging Contaminants Along Three Drainages in the Milwaukee Estuary, Wisconsin, USA. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38376364 DOI: 10.1002/etc.5822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/21/2024]
Abstract
Legacy contaminants and contaminants of emerging concern (CECs) were assessed in tree swallow (Tachycineta bicolor) tissue and diet samples from three drainages in the Milwaukee estuary, Wisconsin, USA, to understand exposures and possible biomarker responses. Two remote Wisconsin lakes were assessed for comparative purposes. Bioaccumulative classes of contaminants, such as polybrominated diphenyl ethers and per- and polyfluoroalkyl substances, while at higher concentrations than the reference lakes, did not vary significantly among sites or among the three drainages. Polycyclic aromatic hydrocarbons were assessed in diet and sediment and were from primarily pyrogenic sources. Ten biomarkers were assessed relative to contaminant exposure. Polychlorinated biphenyls (PCBs) were elevated above reference conditions at all Milwaukee sites but did not correlate with any measured biomarker responses. Only one site, Cedarburg, just downstream from a Superfund site, had elevated PCBs compared to other sites in the Milwaukee estuary. Few non-organochlorine insecticides or herbicides were detected in tree swallow liver tissue, except for the atrazine metabolite desethylatrazine. Few pharmaceuticals and personal care products were detected in liver tissue except for N,N-diethyl-meta-toluamide, iopamidol, and two antibiotics. The present study is one of the most comprehensive assessments to date, along with the previously published Maumee River data, on the exposure and effects of a wide variety of CECs in birds. Environ Toxicol Chem 2024;00:1-22. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Christine M Custer
- Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, Wisconsin
| | - Thomas W Custer
- Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, Wisconsin
| | - Paul M Dummer
- Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, Wisconsin
| | - Sandra Schultz
- Eastern Ecological Science Center-Patuxent, US Geological Survey, Laurel, Maryland
| | | | - Chi Yen Tseng
- Department of Environmental Science, Baylor University Waco, Waco, Texas, USA
| | - Cole W Matson
- Department of Environmental Science, Baylor University Waco, Waco, Texas, USA
| |
Collapse
|
3
|
Sun J, Pan L, Cao Y, Li Z. Biomonitoring of polycyclic aromatic hydrocarbons (PAHs) from Manila clam Ruditapes philippinarum in Laizhou, Rushan and Jiaozhou, bays of China, and investigation of its relationship with human carcinogenic risk. MARINE POLLUTION BULLETIN 2020; 160:111556. [PMID: 32836194 DOI: 10.1016/j.marpolbul.2020.111556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
This study examined the marine environment and seafood safety using chemical monitoring and multiple biomarkers. Samples were collected from three bays on the Shandong Peninsula in China, Laizhou, Rushan and Jiaozhou, in March, May, August, and October of 2018 and 2019. The polycyclic aromatic hydrocarbon (PAH) concentrations in sediments and tissue samples from the clam Ruditapes philippinarum and multiple biomarkers were measured. All the sampling sites were found to be medium-PAH-contaminated areas (100-1000 ng/g d.w.). According to the correlation analysis, ethoxyresorufin-o-deethylase (EROD) and superoxide dismutase (SOD) activity in the clam's digestive gland were sensitive to PAHs (p < .05), but the incremental lifetime cancer risk (ILCR) was lower than the priority risk level (10-4) at most sampling sites. EROD, SOD and acetylcholinesterase activity exhibited significant correlations with the ILCR values (p < .01), suggesting that they may serve as good indicators for assessing safe seafood consumption levels for human beings.
Collapse
Affiliation(s)
- Jiawei Sun
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China.
| | - Yunhao Cao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Zeyuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| |
Collapse
|
4
|
Li Z, Pan L, Guo R, Cao Y, Sun J. A verification of correlation between chemical monitoring and multi-biomarker approach using clam Ruditapes philippinarum and scallop Chlamys farreri to assess the impact of pollution in Shandong coastal area of China. MARINE POLLUTION BULLETIN 2020; 155:111155. [PMID: 32469775 DOI: 10.1016/j.marpolbul.2020.111155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Biogeochemical monitoring coupled with multi-biomarker approach were performed for the assessment of marine environment, using clam Ruditapes philippinarum and scallop Chlamys farreri to indicate contamination status in sediments and seawater respectively. The bivalves were collected from three stations, Jiaozhou Bay, Rushan Bay and Laizhou Bay, of Shandong coastal area. A series of contaminants (PAHs and TBBPA) and biomarkers (AhR, EROD, GST, SOD, GPx, CAT, DNA damage) were measured. Multi-biomarker pollution index (MPI) and integrated biomarker response (IBR) were carried out to evaluate contamination status and both indexes showed that Rushan Bay was most polluted, where the pollution level of sediments reached "highly polluted" in August, followed by Jiaozhou Bay and Rushan Bay which reached "lightly polluted". The correlation of IBR values with contaminants' concentrations was verified through the Pearson correlation coefficient (p < 0.05), consolidating this scientific assessment method for marine environment.
Collapse
Affiliation(s)
- Zeyuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China.
| | - Ruiming Guo
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Yunhao Cao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Jiawei Sun
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| |
Collapse
|
5
|
Custer TW, Custer CM, Dummer PM, Bigorgne E, Oziolor EM, Karouna-Renier N, Schultz S, Erickson RA, Aagaard K, Matson CW. EROD activity, chromosomal damage, and oxidative stress in response to contaminants exposure in tree swallow (Tachycineta bicolor) nestlings from Great Lakes Areas of Concern. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:1392-1407. [PMID: 29039061 DOI: 10.1007/s10646-017-1863-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/23/2017] [Indexed: 06/07/2023]
Abstract
Tree swallow, Tachycineta bicolor, nestlings were collected from 60 sites in the Great Lakes, which included multiple sites within 27 Areas of Concern (AOCs) and six sites not listed as AOCs from 2010 to 2014. Nestlings, approximately 12 days-of-age, were evaluated for ethoxyresorufin-O-dealkylase (EROD) activity, chromosomal damage, and six measures of oxidative stress. Data on each of these biomarkers were divided into four equal numbered groups from the highest to lowest values and the groups were compared to contaminant concentrations using multivariate analysis. Contaminant concentrations, from the same nestlings, included polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), perfluorinated compounds (PFCs), and 17 elements. Alkylated polycyclic aromatic hydrocarbons (aPAHs) and parent PAHs (pPAHs) were measured in pooled nestling dietary samples. Polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and pesticides were measured in sibling eggs. Concentrations of aPAHs, pPAHs, chlordane, dieldrin, heptachlor, and PCBs, in that order, were the major contributors to the significant differences between the lowest and highest EROD activities; PFCs, PBDEs, the remaining pesticides, and all elements were of secondary importance. The four categories of chromosomal damage did not separate out well based on the contaminants measured. Concentrations of aPAHs, pPAHs, heptachlor, PCBs, chlordane, and dieldrin were the major contributors to the significant differences between the lowest and highest activities of two oxidative stress measures, total sulfhydryl (TSH) activity and protein bound sulfhydryl (PBSH) activity. The four categories of thiobarbituric acid reacting substances (TBARS), oxidized glutathione (GSSG), reduced glutathione (GSH), and the ratio of GSSG/GSH did not separate well based on the contaminants measured.
Collapse
Affiliation(s)
- Thomas W Custer
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, 54603, USA.
| | - Christine M Custer
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, 54603, USA
| | - Paul M Dummer
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, 54603, USA
| | - Emilie Bigorgne
- Department of Environmental Science and the Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX, 76798, USA
| | - Elias M Oziolor
- Department of Environmental Science and the Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX, 76798, USA
| | - Natalie Karouna-Renier
- U.S. Geological Survey, Patuxent Wildlife Research Center, BARC East, BLDG 308, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA
| | - Sandra Schultz
- U.S. Geological Survey, Patuxent Wildlife Research Center, BARC East, BLDG 308, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA
| | - Richard A Erickson
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, 54603, USA
| | - Kevin Aagaard
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, 54603, USA
| | - Cole W Matson
- Department of Environmental Science and the Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX, 76798, USA
| |
Collapse
|