1
|
Iqbal MM, Nishimura M, Haider MN, Yoshizawa S. Microbial communities on eelgrass ( Zostera marina) thriving in Tokyo Bay and the possible source of leaf-attached microbes. Front Microbiol 2023; 13:1102013. [PMID: 36687565 PMCID: PMC9853538 DOI: 10.3389/fmicb.2022.1102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Zostera marina (eelgrass) is classified as one of the marine angiosperms and is widely distributed throughout much of the Northern Hemisphere. The present study investigated the microbial community structure and diversity of Z. marina growing in Futtsu bathing water, Chiba prefecture, Japan. The purpose of this study was to provide new insight into the colonization of eelgrass leaves by microbial communities based on leaf age and to compare these communities to the root-rhizome of Z. marina, and the surrounding microenvironments (suspended particles, seawater, and sediment). The microbial composition of each sample was analyzed using 16S ribosomal gene amplicon sequencing. Each sample type was found to have a unique microbial community structure. Leaf-attached microbes changed in their composition depending on the relative age of the eelgrass leaf. Special attention was given to a potential microbial source of leaf-attached microbes. Microbial communities of marine particles looked more like those of eelgrass leaves than those of water samples. This finding suggests that leaf-attached microbes were derived from suspended particles, which could allow them to go back and forth between eelgrass leaves and the water column.
Collapse
Affiliation(s)
- Md Mehedi Iqbal
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan,Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan,*Correspondence: Md Mehedi Iqbal,
| | - Masahiko Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Md. Nurul Haider
- Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan,Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan,Susumu Yoshizawa,
| |
Collapse
|
2
|
Banister RB, Schwarz MT, Fine M, Ritchie KB, Muller EM. Instability and Stasis Among the Microbiome of Seagrass Leaves, Roots and Rhizomes, and Nearby Sediments Within a Natural pH Gradient. MICROBIAL ECOLOGY 2022; 84:703-716. [PMID: 34596709 PMCID: PMC9622545 DOI: 10.1007/s00248-021-01867-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/10/2021] [Indexed: 05/10/2023]
Abstract
Seagrass meadows are hotspots of biodiversity with considerable economic and ecological value. The health of seagrass ecosystems is influenced in part by the makeup and stability of their microbiome, but microbiome composition can be sensitive to environmental change such as nutrient availability, elevated temperatures, and reduced pH. The objective of the present study was to characterize the bacterial community of the leaves, bulk samples of roots and rhizomes, and proximal sediment of the seagrass species Cymodocea nodosa along the natural pH gradient of Levante Bay, Vulcano Island, Italy. The bacterial community was determined by characterizing the 16S rRNA amplicon sequencing and analyzing the operational taxonomic unit classification of bacterial DNA within samples. Statistical analyses were used to explore how life-long exposure to different pH/pCO2 conditions may be associated with significant differences in microbial communities, dominant bacterial classes, and microbial diversity within each plant section and sediment. The microbiome of C. nodosa significantly differed among all sample types and site-specific differences were detected within sediment and root/rhizome microbial communities, but not the leaves. These results show that C. nodosa leaves have a consistent microbial community even across a pH range of 8.15 to 6.05. The ability for C. nodosa to regulate and maintain microbial structure may indicate a semblance of resilience within these vital ecosystems under projected changes in environmental conditions such as ocean acidification.
Collapse
Affiliation(s)
- Raymond B Banister
- Mote Marine Laboratory, Coral Health and Disease Program, Sarasota, FL, USA.
- Institute for Global Ecology, Florida Institute of Technology, 150, W University Blvd, Melbourne, FL, 32901, USA.
| | - Melbert T Schwarz
- Mote Marine Laboratory, Coral Health and Disease Program, Sarasota, FL, USA
| | - Maoz Fine
- The Goodman Faculty of Life Sciences, Bar-Ilan University, 52900, Ramat Gan, Israel
- The Interuniversity Institute for Marine Science, P.O.B. 469, 88103, Eilat, Israel
| | - Kim B Ritchie
- Department of Natural Sciences, University of South Carolina Beaufort, 801, Carteret St., Beaufort, SC, 29906, USA
| | - Erinn M Muller
- Mote Marine Laboratory, Coral Health and Disease Program, Sarasota, FL, USA
| |
Collapse
|
3
|
Characterization of the Bacterial Community in the Ecosystem of Sea Cucumber (Apostichopus japonicus) Culture Ponds: Correlation and Specificity in Multiple Media. WATER 2022. [DOI: 10.3390/w14091386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The bacterial community is an essential component of the aquaculture pond ecosystem, which not only improves and restores the aquaculture environment but also maintains a stable ecological equilibrium with the external environment. Here, Illumina 16S rRNA sequencing was conducted to characterize the bacterial community in the ecosystem of sea cucumber Apostichopus japonicus culture ponds, as well as their correlation with overall community structures. The alpha-diversities of bacterial community among water, sediment, and the gut of A. japonicus were consistent across culture ponds from different areas. Specifically, the richness and diversity of bacterial communities were the highest in sediment, followed by the gut, and the lowest in water. The dominant bacterial community among multiple media was Proteobacteria, which occupies a large proportion of the bacterial community structure, followed by Bacteroidetes and Verrucomicrobia. Highly similar bacterial community structures were present in multiple media among different areas, which provides evidence for deterministic natural evolution. Meanwhile, there was a significant difference (p < 0.05) in the specific bacterial communities across the multiple media. The specific functions of the multiple media in the ecosystem are the main reason for the formation of different bacterial communities. This work demonstrates that bacterial communities are the result of natural evolution within the ecosystem during adaptation to the required environment.
Collapse
|
4
|
Iqbal MM, Nishimura M, Haider MN, Sano M, Ijichi M, Kogure K, Yoshizawa S. Diversity and Composition of Microbial Communities in an Eelgrass (Zostera marina) Bed in Tokyo Bay, Japan. Microbes Environ 2021; 36. [PMID: 34645731 PMCID: PMC8674447 DOI: 10.1264/jsme2.me21037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Zostera marina (eelgrass) is a widespread seagrass species that forms diverse and productive habitats along coast lines throughout much of the northern hemisphere. The present study investigated the microbial consortia of Z. marina growing at Futtsu clam-digging beach, Chiba prefecture, Japan. The following environmental samples were collected: sediment, seawater, plant leaves, and the root-rhizome. Sediment and seawater samples were obtained from three sampling points: inside, outside, and at the marginal point of the eelgrass bed. The microbial composition of each sample was analyzed using 16S ribosomal gene amplicon sequencing. Microbial communities on the dead (withered) leaf surface markedly differed from those in sediment, but were similar to those in seawater. Eelgrass leaves and surrounding seawater were dominated by the bacterial taxa Rhodobacterales (Alphaproteobacteria), whereas Rhodobacterales were a minor group in eelgrass sediment. Additionally, we speculated that the order Sphingomonadales (Alphaproteobacteria) acts as a major degrader during the decomposition process and constantly degrades eelgrass leaves, which then spread into the surrounding seawater. Withered eelgrass leaves did not accumulate on the surface sediment because they were transported out of the eelgrass bed by wind and residual currents unique to the central part of Tokyo Bay.
Collapse
Affiliation(s)
- Md Mehedi Iqbal
- Atmosphere and Ocean Research Institute, The University of Tokyo.,Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo
| | | | - Md Nurul Haider
- Atmosphere and Ocean Research Institute, The University of Tokyo.,Department of Fisheries Technology, Faculty of Fisheries, Bangladesh Agricultural University
| | - Masayoshi Sano
- Atmosphere and Ocean Research Institute, The University of Tokyo.,National Institute of Polar Research
| | - Minoru Ijichi
- Atmosphere and Ocean Research Institute, The University of Tokyo
| | - Kazuhiro Kogure
- Atmosphere and Ocean Research Institute, The University of Tokyo
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo.,Department of Natural Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo
| |
Collapse
|
5
|
Tarquinio F, Attlan O, Vanderklift MA, Berry O, Bissett A. Distinct Endophytic Bacterial Communities Inhabiting Seagrass Seeds. Front Microbiol 2021; 12:703014. [PMID: 34621247 PMCID: PMC8491609 DOI: 10.3389/fmicb.2021.703014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Seagrasses are marine angiosperms that can live completely or partially submerged in water and perform a variety of significant ecosystem services. Like terrestrial angiosperms, seagrasses can reproduce sexually and, the pollinated female flower develop into fruits and seeds, which represent a critical stage in the life of plants. Seed microbiomes include endophytic microorganisms that in terrestrial plants can affect seed germination and seedling health through phytohormone production, enhanced nutrient availability and defence against pathogens. However, the characteristics and origins of the seagrass seed microbiomes is unknown. Here, we examined the endophytic bacterial community of six microenvironments (flowers, fruits, and seeds, together with leaves, roots, and rhizospheric sediment) of the seagrass Halophila ovalis collected from the Swan Estuary, in southwestern Australia. An amplicon sequencing approach (16S rRNA) was used to characterize the diversity and composition of H. ovalis bacterial microbiomes and identify core microbiome bacteria that were conserved across microenvironments. Distinct communities of bacteria were observed within specific seagrass microenvironments, including the reproductive tissues (flowers, fruits, and seeds). In particular, bacteria previously associated with plant growth promoting characteristics were mainly found within reproductive tissues. Seagrass seed-borne bacteria that exhibit growth promoting traits, the ability to fix nitrogen and anti-pathogenic potential activity, may play a pivotal role in seed survival, as is common for terrestrial plants. We present the endophytic community of the seagrass seeds as foundation for the identification of potential beneficial bacteria and their selection in order to improve seagrass restoration.
Collapse
Affiliation(s)
- Flavia Tarquinio
- Oceans and Atmosphere, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia.,Environomics Future Science Platform, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia
| | - Océane Attlan
- Oceans and Atmosphere, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia.,Sciences et Technologies, Université de la Réunion, Saint-Denis, France
| | - Mathew A Vanderklift
- Oceans and Atmosphere, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia
| | - Oliver Berry
- Environomics Future Science Platform, Indian Ocean Marine Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Crawley, WA, Australia
| | - Andrew Bissett
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Hobart, TAS, Australia
| |
Collapse
|
6
|
Aires T, Stuij TM, Muyzer G, Serrão EA, Engelen AH. Characterization and Comparison of Bacterial Communities of an Invasive and Two Native Caribbean Seagrass Species Sheds Light on the Possible Influence of the Microbiome on Invasive Mechanisms. Front Microbiol 2021; 12:653998. [PMID: 34434172 PMCID: PMC8381869 DOI: 10.3389/fmicb.2021.653998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/05/2021] [Indexed: 11/29/2022] Open
Abstract
Invasive plants, including marine macrophytes, are one of the most important threats to biodiversity by displacing native species and organisms depending on them. Invasion success is dependent on interactions among living organisms, but their study has been mostly limited to negative interactions while positive interactions are mostly underlooked. Recent studies suggested that microorganisms associated with eukaryotic hosts may play a determinant role in the invasion process. Along with the knowledge of their structure, taxonomic composition, and potential functional profile, understanding how bacterial communities are associated with the invasive species and the threatened natives (species-specific/environmentally shaped/tissue-specific) can give us a holistic insight into the invasion mechanisms. Here, we aimed to compare the bacterial communities associated with leaves and roots of two native Caribbean seagrasses (Halodule wrightii and Thalassia testudinum) with those of the successful invader Halophila stipulacea, in the Caribbean island Curaçao, using 16S rRNA gene amplicon sequencing and functional prediction. Invasive seagrass microbiomes were more diverse and included three times more species-specific core OTUs than the natives. Associated bacterial communities were seagrass-specific, with higher similarities between natives than between invasive and native seagrasses for both communities associated with leaves and roots, despite their strong tissue differentiation. However, with a higher number of OTUs in common, the core community (i.e., OTUs occurring in at least 80% of the samples) of the native H. wrightii was more similar to that of the invader H. stipulacea than T. testudinum, which could reflect more similar essential needs (e.g., nutritional, adaptive, and physiological) between native and invasive, in contrast to the two natives that might share more environment-related OTUs. Relative to native seagrass species, the invasive H. stipulacea was enriched in halotolerant bacterial genera with plant growth-promoting properties (like Halomonas sp. and Lysinibacillus sp.) and other potential beneficial effects for hosts (e.g., heavy metal detoxifiers and quorum sensing inhibitors). Predicted functional profiles also revealed some advantageous traits on the invasive species such as detoxification pathways, protection against pathogens, and stress tolerance. Despite the predictive nature of our findings concerning the functional potential of the bacteria, this investigation provides novel and important insights into native vs. invasive seagrasses microbiome. We demonstrated that the bacterial community associated with the invasive seagrass H. stipulacea is different from native seagrasses, including some potentially beneficial bacteria, suggesting the importance of considering the microbiome dynamics as a possible and important influencing factor in the colonization of non-indigenous species. We suggest further comparison of H. stipulacea microbiome from its native range with that from both the Mediterranean and Caribbean habitats where this species has a contrasting invasion success. Also, our new findings open doors to a more in-depth investigation combining meta-omics with bacterial manipulation experiments in order to confirm any functional advantage in the microbiome of this invasive seagrass.
Collapse
Affiliation(s)
- Tania Aires
- Centro de Ciências do Mar (CCMAR), Centro de Investigação Marinha e Ambiental (CIMAR), Universidade do Algarve, Faro, Portugal
| | - Tamara M Stuij
- Centro de Ciências do Mar (CCMAR), Centro de Investigação Marinha e Ambiental (CIMAR), Universidade do Algarve, Faro, Portugal.,CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Ester A Serrão
- Centro de Ciências do Mar (CCMAR), Centro de Investigação Marinha e Ambiental (CIMAR), Universidade do Algarve, Faro, Portugal
| | - Aschwin H Engelen
- Centro de Ciências do Mar (CCMAR), Centro de Investigação Marinha e Ambiental (CIMAR), Universidade do Algarve, Faro, Portugal.,CARMABI Foundation, Willemstad, Curaçao
| |
Collapse
|
7
|
Korlević M, Markovski M, Zhao Z, Herndl GJ, Najdek M. Selective DNA and Protein Isolation From Marine Macrophyte Surfaces. Front Microbiol 2021; 12:665999. [PMID: 34108951 PMCID: PMC8180852 DOI: 10.3389/fmicb.2021.665999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/30/2021] [Indexed: 12/04/2022] Open
Abstract
Studies of unculturable microbes often combine methods, such as 16S rRNA sequencing, metagenomics, and metaproteomics. To apply these techniques to the microbial community inhabiting the surfaces of marine macrophytes, it is advisable to perform a selective DNA and protein isolation prior to the analysis to avoid biases due to the host material being present in high quantities. Two protocols for DNA and protein isolation were adapted for selective extractions of DNA and proteins from epiphytic communities inhabiting the surfaces of two marine macrophytes, the seagrass Cymodocea nodosa and the macroalga Caulerpa cylindracea. Protocols showed an almost complete removal of the epiphytic community regardless of the sampling season, station, settlement, or host species. The obtained DNA was suitable for metagenomic and 16S rRNA sequencing, while isolated proteins could be identified by mass spectrometry. Low presence of host DNA and proteins in the samples indicated a high specificity of the protocols. The procedures are based on universally available laboratory chemicals making the protocols widely applicable. Taken together, the adapted protocols ensure an almost complete removal of the macrophyte epiphytic community. The procedures are selective for microbes inhabiting macrophyte surfaces and provide DNA and proteins applicable in 16S rRNA sequencing, metagenomics, and metaproteomics.
Collapse
Affiliation(s)
- Marino Korlević
- Center for Marine Research, Ruđer Bošković Institute, Rovinj, Croatia
| | - Marsej Markovski
- Center for Marine Research, Ruđer Bošković Institute, Rovinj, Croatia
| | - Zihao Zhao
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Utrecht University, Den Burg, Netherlands.,Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Mirjana Najdek
- Center for Marine Research, Ruđer Bošković Institute, Rovinj, Croatia
| |
Collapse
|
8
|
The Seagrass Holobiont: What We Know and What We Still Need to Disclose for Its Possible Use as an Ecological Indicator. WATER 2021. [DOI: 10.3390/w13040406] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microbes and seagrass establish symbiotic relationships constituting a functional unit called the holobiont that reacts as a whole to environmental changes. Recent studies have shown that the seagrass microbial associated community varies according to host species, environmental conditions and the host’s health status, suggesting that the microbial communities respond rapidly to environmental disturbances and changes. These changes, dynamics of which are still far from being clear, could represent a sensitive monitoring tool and ecological indicator to detect early stages of seagrass stress. In this review, the state of art on seagrass holobiont is discussed in this perspective, with the aim of disentangling the influence of different factors in shaping it. As an example, we expand on the widely studied Halophila stipulacea’s associated microbial community, highlighting the changing and the constant components of the associated microbes, in different environmental conditions. These studies represent a pivotal contribution to understanding the holobiont’s dynamics and variability pattern, and to the potential development of ecological/ecotoxicological indices. The influences of the host’s physiological and environmental status in changing the seagrass holobiont, alongside the bioinformatic tools for data analysis, are key topics that need to be deepened, in order to use the seagrass-microbial interactions as a source of ecological information.
Collapse
|
9
|
Hurtado-McCormick V, Kahlke T, Petrou K, Jeffries T, Ralph PJ, Seymour JR. Regional and Microenvironmental Scale Characterization of the Zostera muelleri Seagrass Microbiome. Front Microbiol 2019; 10:1011. [PMID: 31139163 PMCID: PMC6527750 DOI: 10.3389/fmicb.2019.01011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/23/2019] [Indexed: 11/29/2022] Open
Abstract
Seagrasses are globally distributed marine plants that represent an extremely valuable component of coastal ecosystems. Like terrestrial plants, seagrass productivity and health are likely to be strongly governed by the structure and function of the seagrass microbiome, which will be distributed across a number of discrete microenvironments within the plant, including the phyllosphere, the endosphere and the rhizosphere, all different in physical and chemical conditions. Here we examined patterns in the composition of the microbiome of the seagrass Zostera muelleri, within six plant-associated microenvironments sampled across four different coastal locations in New South Wales, Australia. Amplicon sequencing approaches were used to characterize the diversity and composition of bacterial, microalgal, and fungal microbiomes and ultimately identify "core microbiome" members that were conserved across sampling microenvironments. Discrete populations of bacteria, microalgae and fungi were observed within specific seagrass microenvironments, including the leaves and roots and rhizomes, with "core" taxa found to persist within these microenvironments across geographically disparate sampling sites. Bacterial, microalgal and fungal community profiles were most strongly governed by intrinsic features of the different seagrass microenvironments, whereby microscale differences in community composition were greater than the differences observed between sampling regions. However, our results showed differing strengths of microbial preferences at the plant scale, since this microenvironmental variability was more pronounced for bacteria than it was for microalgae and fungi, suggesting more specific interactions between the bacterial consortia and the seagrass host, and potentially implying a highly specialized coupling between seagrass and bacterial metabolism and ecology. Due to their persistence within a given seagrass microenvironment, across geographically discrete sampling locations, we propose that the identified "core" microbiome members likely play key roles in seagrass physiology as well as the ecology and biogeochemistry of seagrass habitats.
Collapse
Affiliation(s)
| | - Tim Kahlke
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Katherina Petrou
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Thomas Jeffries
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
| | - Peter J. Ralph
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Justin Robert Seymour
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
10
|
Serebryakova A, Aires T, Viard F, Serrão EA, Engelen AH. Summer shifts of bacterial communities associated with the invasive brown seaweed Sargassum muticum are location and tissue dependent. PLoS One 2018; 13:e0206734. [PMID: 30517113 PMCID: PMC6281184 DOI: 10.1371/journal.pone.0206734] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/18/2018] [Indexed: 02/05/2023] Open
Abstract
Seaweed-associated microbiota experience spatial and temporal shifts in response to changing environmental conditions and seaweed physiology. These shifts may result in structural, functional and behavioral changes in the host with potential consequences for its fitness. They, thus, may help the host to adapt to changing environmental conditions. The current knowledge of seasonal variation of seaweed-associated microbiota is however still limited. In this study, we explored temporal and spatial variation of microbial communities associated with the invasive brown seaweed S. muticum. We sampled in northern and southern Portugal, in September, March and July-August (summer). In addition, as (pseudo-)perennial seaweeds display seasonal reproductive phenology, we sampled various parts of the individuals to disentangle the effect of temporal changes from those due to structural development variations. The diversity and structure of associated microbial communities were determined using next generation sequencing of the variable regions V5-7 of the 16S rDNA. We expected to find differentiation in associated microbial communities between regions and sampling months, but with differences depending on the seaweed structure examined. As expected, the study revealed substantial temporal shifts in S. muticum microbiome, for instance with large abundance of Rhodobacteraceae and Loktanella in September-March but prevalence of Pirellulales during the summer months. Variations between regions and tissues were also observed: in northern Portugal and on basal structures, bacterial diversity was higher as compared to the South and apical parts. All examined seaweed structures showed temporal differences in associated microbial community structure over time, except for holdfasts between September and March. Bacteria contributing to these changes varied spatially. Conversely to all other structures, the holdfast also did not show differences in associated community structure between southern and northern regions. Our study highlights the importance of structural microscale differentiations within seaweeds hosts with regard to their associated microbial communities and their importance across temporal and spatial dimensions.
Collapse
Affiliation(s)
- Alexandra Serebryakova
- Center for Marine Sciences (CCMAR), F.C.T. University of Algarve, Faro, Portugal
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, UPMC Univ Paris, Roscoff, France
| | - Tania Aires
- Center for Marine Sciences (CCMAR), F.C.T. University of Algarve, Faro, Portugal
| | - Frédérique Viard
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, UPMC Univ Paris, Roscoff, France
| | - Ester A. Serrão
- Center for Marine Sciences (CCMAR), F.C.T. University of Algarve, Faro, Portugal
| | - Aschwin H. Engelen
- Center for Marine Sciences (CCMAR), F.C.T. University of Algarve, Faro, Portugal
| |
Collapse
|
11
|
Crump BC, Wojahn JM, Tomas F, Mueller RS. Metatranscriptomics and Amplicon Sequencing Reveal Mutualisms in Seagrass Microbiomes. Front Microbiol 2018; 9:388. [PMID: 29599758 PMCID: PMC5863793 DOI: 10.3389/fmicb.2018.00388] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/20/2018] [Indexed: 11/13/2022] Open
Abstract
Terrestrial plants benefit from many well-understood mutualistic relationships with root- and leaf-associated microbiomes, but relatively little is known about these relationships for seagrass and other aquatic plants. We used 16S rRNA gene amplicon sequencing and metatranscriptomics to assess potential mutualisms between microorganisms and the seagrasses Zostera marina and Zostera japonica collected from mixed beds in Netarts Bay, OR, United States. The phylogenetic composition of leaf-, root-, and water column-associated bacterial communities were strikingly different, but these communities were not significantly different between plant species. Many taxa present on leaves were related to organisms capable of consuming the common plant metabolic waste product methanol, and of producing agarases, which can limit the growth of epiphytic algae. Taxa present on roots were related to organisms capable of oxidizing toxic sulfur compounds and of fixing nitrogen. Metatranscriptomic sequencing identified expression of genes involved in all of these microbial metabolic processes at levels greater than typical water column bacterioplankton, and also identified expression of genes involved in denitrification and in bacterial synthesis of the plant growth hormone indole-3-acetate. These results provide the first evidence using metatranscriptomics that seagrass microbiomes carry out a broad range of functions that may benefit their hosts, and imply that microbe-plant mutualisms support the health and growth of aquatic plants.
Collapse
Affiliation(s)
- Byron C. Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| | - John M. Wojahn
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| | - Fiona Tomas
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, United States
- Instituto Mediterráneo de Estudios Avanzados (IMEDEA), Universitat de les Illes Balears (UIB) – Consejo Superior de Investigaciones Científicas (CSIC), Esporles, Spain
| | - Ryan S. Mueller
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
12
|
Ettinger CL, Voerman SE, Lang JM, Stachowicz JJ, Eisen JA. Microbial communities in sediment from Zostera marina patches, but not the Z. marina leaf or root microbiomes, vary in relation to distance from patch edge. PeerJ 2017; 5:e3246. [PMID: 28462046 PMCID: PMC5410140 DOI: 10.7717/peerj.3246] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022] Open
Abstract
Background Zostera marina (also known as eelgrass) is a foundation species in coastal and marine ecosystems worldwide and is a model for studies of seagrasses (a paraphyletic group in the order Alismatales) that include all the known fully submerged marine angiosperms. In recent years, there has been a growing appreciation of the potential importance of the microbial communities (i.e., microbiomes) associated with various plant species. Here we report a study of variation in Z. marina microbiomes from a field site in Bodega Bay, CA. Methods We characterized and then compared the microbial communities of root, leaf and sediment samples (using 16S ribosomal RNA gene PCR and sequencing) and associated environmental parameters from the inside, edge and outside of a single subtidal Z. marina patch. Multiple comparative approaches were used to examine associations between microbiome features (e.g., diversity, taxonomic composition) and environmental parameters and to compare sample types and sites. Results Microbial communities differed significantly between sample types (root, leaf and sediment) and in sediments from different sites (inside, edge, outside). Carbon:Nitrogen ratio and eelgrass density were both significantly correlated to sediment community composition. Enrichment of certain taxonomic groups in each sample type was detected and analyzed in regard to possible functional implications (especially regarding sulfur metabolism). Discussion Our results are mostly consistent with prior work on seagrass associated microbiomes with a few differences and additional findings. From a functional point of view, the most significant finding is that many of the taxa that differ significantly between sample types and sites are closely related to ones commonly associated with various aspects of sulfur and nitrogen metabolism. Though not a traditional model organism, we believe that Z. marina can become a model for studies of marine plant-microbiome interactions.
Collapse
Affiliation(s)
| | - Sofie E Voerman
- Climate Change Cluster, University of Technology Sydney, Sydney, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Jenna M Lang
- Genome Center, University of California, Davis, CA, United States.,Trace Genomics, San Francisco, CA, United States
| | - John J Stachowicz
- Department of Evolution and Ecology, University of California, Davis, CA, United States
| | - Jonathan A Eisen
- Genome Center, University of California, Davis, CA, United States.,Department of Evolution and Ecology, University of California, Davis, CA, United States.,Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
13
|
Cao Q, Wang H, Chen X, Wang R, Liu J. Composition and distribution of microbial communities in natural river wetlands and corresponding constructed wetlands. ECOLOGICAL ENGINEERING 2017; 98:40-48. [DOI: 10.1016/j.ecoleng.2016.10.063] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
|
14
|
Han M, Gong Y, Zhou C, Zhang J, Wang Z, Ning K. Comparison and Interpretation of Taxonomical Structure of Bacterial Communities in Two Types of Lakes on Yun-Gui plateau of China. Sci Rep 2016; 6:30616. [PMID: 27461070 PMCID: PMC4962099 DOI: 10.1038/srep30616] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 07/05/2016] [Indexed: 01/10/2023] Open
Abstract
Bacterial communities from freshwater lakes are shaped by various factors such as nutrients, pH value, temperature, etc. Their compositions and relative abundances would undergo changes to adapt the changing environments, and in turn could affect the environments of freshwater lakes. Analyses of the freshwater lake’s bacterial communities under different environments would be of pivotal importance to monitor the condition of waterbody. In this study, we have collected freshwater samples from two lakes on Yun-Gui plateau of China, Lake Dianchi and Lake Haixihai, and analyzed the bacterial community structures from these samples based on 16S rRNA sequencing. Results have shown that: Firstly, the bacterial community of these samples have very different taxonomical structures, not only between two lakes but also among the intra-groups for samples collected from Dianchi. Secondly, the differences between samples from two lakes are highly associated with the chemical-geographical properties of the two lakes. Thirdly, for samples of Dianchi and Haixihai, analytical results of physicochemical, taxonomical structure and relative abundance of community revealed that extreme physicochemical factors caused by human activities have strongly affected the bacterial ecosystem in Dianchi. These results have clearly indicated the importance of combining biological profiling and chemical-geographical properties for monitoring Chinese plateau freshwater bacterial ecosystem, which could provide clues for Chinese freshwater ecosystem remediation on plateau.
Collapse
Affiliation(s)
- Maozhen Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Chunyu Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Junqian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan, Hubei 430077, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| |
Collapse
|