1
|
Hotopp I, Russ A, Alkassab A, Pistorius J, Prados EA, Persigehl M. Using equivalence tests in higher tier studies of honey bees under the revised EFSA Bee Guidance-How? INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1496-1503. [PMID: 38456634 DOI: 10.1002/ieam.4911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
The proposed use of equivalence tests instead of difference tests in the revised guidance on the risk assessment of plant protection products for bees is a reasonable approach given an adverse effect was observed in the lower tier studies, using the hypothesis that there is a risk as the null hypothesis places the burden to prove the opposite on the other side. However, some uncertainties regarding the application of equivalence tests in field studies are discussed in the present study. Here, we compare equivalence and difference testing methods using a control dataset of a honey bee field effect study conducted in northern Germany in 2014. Half of the 48 colonies were assigned to a hypothetical test item group, and the colony strength data were analyzed using t-tests, a generalized linear mixed model (GLMM), and the corresponding equivalence tests. The data reflected the natural variability of honey bee colonies, with initially approximately 12 000 adult bees. Although the t-test and GLMM confirmed that 24 + 24 colonies are sufficient to show "no adverse effect," the equivalence tests of the t-test and GLMM were not able to reject the null hypothesis and classified at least some of the assessments as "high risk," indicating a power that was too low. Based on this, different operating options to reduce the variability are discussed. One possible option, which may provide a more realistic application of equivalence to avoid false high risk, is to consider the lower confidence interval of the control as a baseline and use GLMMs. With this option, we demonstrate a relatively acceptable probability to prove that no high risk for initially similar groups can be achieved. Further studies with different numbers of colonies are still needed to develop and validate the suggested approach. Integr Environ Assess Manag 2024;20:1496-1503. © 2024 SETAC.
Collapse
Affiliation(s)
| | - Anja Russ
- tier3 solutions GmbH, Leverkusen, Germany
| | - Abdulrahim Alkassab
- Federal Research Centre for Cultivated Plants (JKI), Institute for Bee Protection, Braunschweig, Germany
| | - Jens Pistorius
- Federal Research Centre for Cultivated Plants (JKI), Institute for Bee Protection, Braunschweig, Germany
| | - Elena A Prados
- Unidad de Productos Fitosanitarios, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Madrid, Spain
| | | |
Collapse
|
2
|
Tesi GO, Okpara KE, Tesi JN, Agbozu IE, Techato K. Human exposure to endocrine-disrupting organochlorine and organophosphate pesticides in locally produced and imported honey in Nigeria. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-21. [PMID: 38958232 DOI: 10.1080/09603123.2024.2373169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
The practice of exposing honeybees to pesticides by bee-keepers or via agricultural crops, is one of the ways in which honey becomes contaminated with pesticides. Though honey has many health advantages, however, human exposure to pesticides via consumption of honey has generated public health concerns due to their endocrine-disruptive abilities. Thus, this study evaluated human exposure to endocrine-disrupting pesticides in honey from Nigeria to establish the safety of honey consumed in Nigeria. Honey were analyzed for pesticides using a gas chromatograph combined with an electron capture detector. The concentrations of ∑20 OCPs and ∑14 OPPs in the honey ranged from 0.45-1045 ng/g and 1.13-632 ng/g respectively. The values of both individual and cumulative non-carcinogenic and carcinogenic risks for humans were <1 and 1 × 10-4 respectively suggesting that there are no potential health risks via the honey consumption. The source analysis showed that pesticides in these honey originated from historical and recent/fresh use.
Collapse
Affiliation(s)
- Godswill Okeoghene Tesi
- Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
- Department of Chemical Sciences, University of Africa, Toru-Orua, Nigeria
- Department of Chemistry, Federal University of Petroleum Resources, Effurun, Nigeria
| | - Kingsley Ezechukwu Okpara
- Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
- Institute of Geosciences and Environmental Management, Rivers State University, Port Harcourt, Nigeria
| | - Juliet Ngozi Tesi
- Department of Environmental Management and Toxicology, Federal University of Petroleum Resources, Effurun, Nigeria
| | - Iwekumo Ebibofe Agbozu
- Department of Environmental Management and Toxicology, Federal University of Petroleum Resources, Effurun, Nigeria
| | - Kuaanan Techato
- Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
3
|
Zhang C, Wang X, Kaur P, Gan J. A critical review on the accumulation of neonicotinoid insecticides in pollen and nectar: Influencing factors and implications for pollinator exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165670. [PMID: 37478949 DOI: 10.1016/j.scitotenv.2023.165670] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Neonicotinoids are a class of neuro-active insecticides widely used to protect major crops, primarily because of their broad-spectrum insecticidal activity and low vertebrate toxicity. Owing to their systemic nature, plants readily take up neonicotinoids and translocate them through roots, leaves, and other tissues to flowers (pollen and nectar) that serve as a critical point of exposure to pollinators foraging on treated plants. The growing evidence for potential adverse effects on non-target species, especially pollinators, and persistence has raised serious concerns, as these pesticides are increasingly prevalent in terrestrial and aquatic systems. Despite increasing research efforts, our understanding of the potential toxicity of neonicotinoids and the risks they pose to non-target species remains limited. Therefore, this critical review provides a succinct evaluation of the uptake, translocation, and accumulation processes of neonicotinoids in plants and the factors that may affect the eventual build-up of neonicotinoids in pollen and nectar. The role of plant species, as well as the physicochemical properties and application methods of neonicotinoids is discussed. Potential knowledge gaps are identified, and questions meriting future research are suggested for improving our understanding of the relationship between neonicotinoid residues in plants and exposure to pollinators.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Environmental Sciences, University of California, Riverside 92521, CA, USA; Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Xinru Wang
- Department of Environmental Sciences, University of California, Riverside 92521, CA, USA; Key Laboratory of Tea Biology and Resources Utilization Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Parminder Kaur
- Department of Environmental Sciences, University of California, Riverside 92521, CA, USA.
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside 92521, CA, USA
| |
Collapse
|
4
|
Zioga E, White B, Stout JC. Honey bees and bumble bees may be exposed to pesticides differently when foraging on agricultural areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:166214. [PMID: 37567302 DOI: 10.1016/j.scitotenv.2023.166214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
In an agricultural environment, where crops are treated with pesticides, bees are likely to be exposed to a range of chemical compounds in a variety of ways. The extent to which different bee species are affected by these chemicals, largely depends on the concentrations and type of exposure. We quantified the presence of selected pesticide compounds in the pollen of two different entomophilous crops; oilseed rape (Brassica napus) and broad bean (Vicia faba). Sampling was performed in 12 sites in Ireland and our results were compared with the pollen loads of honey bees and bumble bees actively foraging on those crops in those same sites. Detections were compound specific, and the timing of pesticide application in relation to sampling likely influenced the final residue contamination levels. Most detections originated from compounds that were not recently applied on the fields, and samples from B. napus fields were more contaminated compared to those from V. faba fields. Crop pollen was contaminated only with fungicides, honey bee pollen loads contained mainly fungicides, while more insecticides were detected in bumble bee pollen loads. The highest number of compounds and most detections were observed in bumble bee pollen loads, where notably, all five neonicotinoids assessed (acetamiprid, clothianidin, imidacloprid, thiacloprid, and thiamethoxam) were detected despite the no recent application of these compounds on the fields where samples were collected. The concentrations of neonicotinoid insecticides were positively correlated with the number of wild plant species present in the bumble bee-collected pollen samples, but this relationship could not be verified for honey bees. The compounds azoxystrobin, boscalid and thiamethoxam formed the most common pesticide combination in pollen. Our results raise concerns about potential long-term bee exposure to multiple residues and question whether honey bees are suitable surrogates for pesticide risk assessments for all bee species.
Collapse
Affiliation(s)
- Elena Zioga
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland.
| | - Blánaid White
- School of Chemical Sciences, DCU Water Institute, Dublin City University, Dublin 9, Ireland
| | - Jane C Stout
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
5
|
Azpiazu C, Medina P, Sgolastra F, Moreno-Delafuente A, Viñuela E. Pesticide residues in nectar and pollen of melon crops: Risk to pollinators and effects of a specific pesticide mixture on Bombus terrestris (Hymenoptera: Apidae) micro-colonies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121451. [PMID: 36933818 DOI: 10.1016/j.envpol.2023.121451] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Residues detected in pollen collected by honey bees are often used to estimate pesticide exposure in ecotoxicological studies. However, for a more accurate assessment of pesticides effect on foraging pollinators, residues found directly on flowers are a more realistic exposure approximation. We conducted a multi-residue analysis of pesticides on pollen and nectar of melon flowers collected from five fields. The cumulative chronic oral exposure Risk Index (RI) was calculated for Apis mellifera, Bombus terrestris and Osmia bicornis to multiple pesticides. However, this index could underestimate the risk since sublethal or synergistic effects are not considered. Therefore, a mixture containing three of the most frequently detected pesticides in our study was tested for synergistic impact on B. terrestris micro-colonies through a chronic oral toxicity test. According to the result, pollen and nectar samples contained numerous pesticide residues, including nine insecticides, nine fungicides, and one herbicide. Eleven of those were not applied by farmers during the crop season, revealing that melon agroecosystems may be pesticide contaminated environments. The primary contributor to the chronic RI was imidacloprid and O. bircornis is at greatest risk for lethality resulting from chronic oral exposure at these sites. In the bumblebee micro-colony bioassay, dietary exposure to acetamiprid, chlorpyrifos and oxamyl at residue level concentration, showed no effects on worker mortality, drone production or drone size and no synergies were detected when pesticide mixtures were evaluated. In conclusion, our findings have significant implications for improving pesticide risk assessment schemes to guarantee pollinator conservation. In particular, bee pesticide risk assessment should not be limited to acute exposure effects to isolated active ingredients in honey bees. Instead, risk assessments should consider the long-term pesticide exposure effects in both pollen and nectar on a range of bees that reflect the diversity of natural ecosystems and the synergistic potential among pesticide formulations.
Collapse
Affiliation(s)
- Celeste Azpiazu
- Unidad de Protección de Cultivos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Madrid, Spain; Institute of Evolutionary Biology (CSIC- Universitat Pompeu Fabra), Barcelona, Spain; CREAF-Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola Del Vallès), Catalonia, Spain.
| | - Pilar Medina
- Unidad de Protección de Cultivos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Madrid, Spain
| | - Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Ana Moreno-Delafuente
- Unidad de Protección de Cultivos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Madrid, Spain; Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), Alcalá de Henares, Madrid, Spain
| | - Elisa Viñuela
- Unidad de Protección de Cultivos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Madrid, Spain
| |
Collapse
|
6
|
Reiner D, Spangenberg MC, Grimm V, Groeneveld J, Wiegand K. Chronic and Acute Effects of Imidacloprid on a Simulated BEEHAVE Honeybee Colony. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2318-2327. [PMID: 35771006 DOI: 10.1002/etc.5420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/23/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Honeybees (Apis mellifera) are important pollinators for wild plants as well as for crops, but honeybee performance is threatened by several stressors including varroa mites, gaps in foraging supply, and pesticides. The consequences of bee colony longtime exposure to multiple stressors are not well understood. The vast number of possible stressor combinations and necessary study duration require research comprising field, laboratory, and simulation experiments. We simulated long-term exposure of a honeybee colony to the insecticide imidacloprid and to varroa mites carrying the deformed wing virus in landscapes with different temporal gaps in resource availability as single stressors and in combinations. Furthermore, we put a strong emphasis on chronic lethal, acute sublethal, and acute lethal effects of imidacloprid on honeybees. We have chosen conservative published values to parameterize our model (e.g., highest reported imidacloprid contamination). As expected, combinations of stressors had a stronger negative effect on bee performance than each single stressor alone, and effect sizes were larger after 3 years of exposure than after the first year. Imidacloprid-caused reduction in bee performance was almost exclusively due to chronic lethal effects because the thresholds for acute effects were rarely met in simulations. In addition, honeybee colony extinctions were observed by the last day of the first year but more pronounced on the last days of the second and third simulation year. In conclusion, our study highlights the need for more long-term studies on chronic lethal effects of pesticides on honeybees. Environ Toxicol Chem 2022;41:2318-2327. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Dominik Reiner
- Department of Ecosystem Modelling, University of Göttingen, Göttingen, Germany
| | | | - Volker Grimm
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Jürgen Groeneveld
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Kerstin Wiegand
- Department of Ecosystem Modelling, University of Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Graham KK, Milbrath MO, Zhang Y, Baert N, McArt S, Isaacs R. Pesticide risk to managed bees during blueberry pollination is primarily driven by off-farm exposures. Sci Rep 2022; 12:7189. [PMID: 35504929 PMCID: PMC9065077 DOI: 10.1038/s41598-022-11156-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
When managed bee colonies are brought to farms for crop pollination, they can be exposed to pesticide residues. Quantifying the risk posed by these exposures can indicate which pesticides are of the greatest concern and helps focus efforts to reduce the most harmful exposures. To estimate the risk from pesticides to bees while they are pollinating blueberry fields, we sampled blueberry flowers, foraging bees, pollen collected by returning honey bee and bumble bee foragers at colonies, and wax from honey bee hives in blooming blueberry farms in southwest Michigan. We screened the samples for 261 active ingredients using a modified QuEChERS method. The most abundant pesticides were those applied by blueberry growers during blueberry bloom (e.g., fenbuconazole and methoxyfenozide). However, we also detected highly toxic pesticides not used in this crop during bloom (or other times of the season) including the insecticides chlorpyrifos, clothianidin, avermectin, thiamethoxam, and imidacloprid. Using LD50 values for contact and oral exposure to honey bees and bumble bees, we calculated the Risk Quotient (RQ) for each individual pesticide and the average sample RQ for each farm. RQ values were considered in relation to the U.S. Environmental Protection Agency acute contact level of concern (LOC, 0.4), the European Food Safety Authority (EFSA) acute contact LOC (0.2) and the EFSA chronic oral LOC (0.03). Pollen samples were most likely to exceed LOC values, with the percent of samples above EFSA's chronic oral LOC being 0% for flowers, 3.4% for whole honey bees, 0% for whole bumble bees, 72.4% for honey bee pollen in 2018, 45.4% of honey bee pollen in 2019, 46.7% of bumble bee pollen in 2019, and 3.5% of honey bee wax samples. Average pollen sample RQ values were above the EFSA chronic LOC in 92.9% of farms in 2018 and 42.9% of farms in 2019 for honey bee collected pollen, and 46.7% of farms for bumble bee collected pollen in 2019. Landscape analyses indicated that sample RQ was positively correlated with the abundance of apple and cherry orchards located within the flight range of the bees, though this varied between bee species and landscape scale. There was no correlation with abundance of blueberry production. Our results highlight the need to mitigate pesticide risk to bees across agricultural landscapes, in addition to focusing on the impact of applications on the farms where they are applied.
Collapse
Affiliation(s)
- Kelsey K Graham
- Department of Entomology, Michigan State University, 202 CIPS, 578 Wilson Road, East Lansing, MI, 48824, USA.
- Pollinating Insect - Biology, Management, Systematics Research Unit, U.S. Department of Agriculture - Agricultural Research Service, 1410 N 800 E, Logan, UT, 84341, USA.
| | - Meghan O Milbrath
- Department of Entomology, Michigan State University, 202 CIPS, 578 Wilson Road, East Lansing, MI, 48824, USA
| | - Yajun Zhang
- Department of Entomology, Michigan State University, 202 CIPS, 578 Wilson Road, East Lansing, MI, 48824, USA
| | - Nicolas Baert
- Department of Entomology, Cornell University, 4129 Comstock Hall, Ithaca, NY, 14853, USA
| | - Scott McArt
- Department of Entomology, Cornell University, 4129 Comstock Hall, Ithaca, NY, 14853, USA
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, 202 CIPS, 578 Wilson Road, East Lansing, MI, 48824, USA
| |
Collapse
|
8
|
Aarønes MR, Paus-Knudsen JS, Nielsen A, Rundberget JT, Borgå K. Within-Body Distributions and Feeding Effects of the Neonicotinoid Insecticide Clothianidin in Bumblebees (Bombus terrestris). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2781-2790. [PMID: 34236107 DOI: 10.1002/etc.5154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/09/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Bumblebees can be exposed to neonicotinoid pesticides through nectar and pollen collected from treated crops, which can cause lethal and sublethal effects in these nontarget pollinators. However, the body distribution of the compound after exposure to neonicotinoids in bumblebees is not well studied. Bumblebee colonies (Bombus terrestris, n = 20) were exposed to field-realistic concentrations of clothianidin through artificial nectar (3.6-13 µg/L) for 9 d. Comparison of the nominal with the measured exposure in nectar indicated good compliance, confirming the applicability of the method. When quantified, clothianidin showed a concentration-dependent occurrence in the head and body of workers (head: <0.2-2.17 µg/kg; body: <0.2-3.17 µg/kg), and in the body of queens (<0.2-2.49 µg/kg), although concentrations were below those measured in the nectar (bioaccumulation factor = 0.2). Exposure to clothianidin did not affect mortality nor brood production, nor did it have a statistically significant effect on nectar consumption and size of food storage. However, visual inspection suggests higher nectar consumption of nectar with low clothianidin content compared with nectar with no or high clothianidin content. Our results show that dietary clothianidin is taken up in bumblebees, but does not bioaccumulate to elevated levels compared with exposure. Still, clothianidin may elicit responses that affect feeding behavior of the pollinator B. terrestris, although our endpoints were not significantly affected. Environ Toxicol Chem 2021;40:2781-2790. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Anders Nielsen
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Katrine Borgå
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Lundin O. Consequences of the neonicotinoid seed treatment ban on oilseed rape production - what can be learnt from the Swedish experience? PEST MANAGEMENT SCIENCE 2021; 77:3815-3819. [PMID: 33709524 DOI: 10.1002/ps.6361] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/19/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
There has been great concern about negative effects on crop production resulting from the ban on insecticide seed treatments containing neonicotinoids. I examine how the neonicotinoid ban has affected crop protection and crop production in oilseed rape (Brassica napus L.) using Sweden as a case study and compare the Swedish situation with that in leading countries growing winter and spring oilseed rape, respectively. The cropping area of winter and spring oilseed rape in Sweden has increased by approximately 40% to around 100 000 ha and decreased by approximately 90% to around 4000 ha, respectively following the ban and there are trends for increased pest and disease pressure. Overall, however, the ban has not had any major impacts on total oilseed rape cropping area or crop yields per hectare of either winter or spring oilseed rape, which is in contrast to elsewhere in Europe. In Germany and the United Kingdom, for example, the cropping area has decreased following the ban on neonicotinoid seed treatments, attributed to increased insect pest pressure especially from cabbage stem flea beetle, Psylliodes chrysocephala. I conclude that winter oilseed rape has remained a viable crop to grow in Sweden without insecticide seed treatments, but that further investments into integrated pest management are needed for sustainable insect pest control in oilseed rape in the future. © 2021 The Author. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ola Lundin
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
10
|
Giorio C, Safer A, Sánchez-Bayo F, Tapparo A, Lentola A, Girolami V, van Lexmond MB, Bonmatin JM. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 1: new molecules, metabolism, fate, and transport. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11716-11748. [PMID: 29105037 PMCID: PMC7920890 DOI: 10.1007/s11356-017-0394-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/02/2017] [Indexed: 05/04/2023]
Abstract
With the exponential number of published data on neonicotinoids and fipronil during the last decade, an updated review of literature has been conducted in three parts. The present part focuses on gaps of knowledge that have been addressed after publication of the Worldwide Integrated Assessment (WIA) on systemic insecticides in 2015. More specifically, new data on the mode of action and metabolism of neonicotinoids and fipronil, and their toxicity to invertebrates and vertebrates, were obtained. We included the newly detected synergistic effects and/or interactions of these systemic insecticides with other insecticides, fungicides, herbicides, adjuvants, honeybee viruses, and parasites of honeybees. New studies have also investigated the contamination of all environmental compartments (air and dust, soil, water, sediments, and plants) as well as bees and apicultural products, food and beverages, and the exposure of invertebrates and vertebrates to such contaminants. Finally, we review new publications on remediation of neonicotinoids and fipronil, especially in water systems. Conclusions of the previous WIA in 2015 are reinforced; neonicotinoids and fipronil represent a major threat worldwide for biodiversity, ecosystems, and all the services the latter provide.
Collapse
Affiliation(s)
- Chiara Giorio
- Laboratoire Chimie de l'Environnement, Centre National de la Recherche Scientifique (CNRS) and Aix Marseille University, Marseille, France
| | - Anton Safer
- Institute of Public Health, Ruprecht-Karls-University, INF324, 69120, Heidelberg, Germany
| | - Francisco Sánchez-Bayo
- School of Life and Environmental Sciences, The University of Sydney, 1 Central Avenue, Eveleigh, NSW, 2015, Australia
| | - Andrea Tapparo
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131, Padua, Italy
| | - Andrea Lentola
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131, Padua, Italy
| | - Vincenzo Girolami
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131, Padua, Italy
| | | | - Jean-Marc Bonmatin
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS), Rue Charles Sadron, 45071, Orléans, France.
| |
Collapse
|
11
|
Pisa L, Goulson D, Yang EC, Gibbons D, Sánchez-Bayo F, Mitchell E, Aebi A, van der Sluijs J, MacQuarrie CJK, Giorio C, Long EY, McField M, Bijleveld van Lexmond M, Bonmatin JM. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11749-11797. [PMID: 29124633 PMCID: PMC7921077 DOI: 10.1007/s11356-017-0341-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/25/2017] [Indexed: 05/15/2023]
Abstract
New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous Worldwide Integrated Assessment (WIA) in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators. Toxic effects on other invertebrate taxa also covered predatory and parasitoid natural enemies and aquatic arthropods. Little new information has been gathered on soil organisms. The impact on marine and coastal ecosystems is still largely uncharted. The chronic lethality of neonicotinoids to insects and crustaceans, and the strengthened evidence that these chemicals also impair the immune system and reproduction, highlights the dangers of this particular insecticidal class (neonicotinoids and fipronil), with the potential to greatly decrease populations of arthropods in both terrestrial and aquatic environments. Sublethal effects on fish, reptiles, frogs, birds, and mammals are also reported, showing a better understanding of the mechanisms of toxicity of these insecticides in vertebrates and their deleterious impacts on growth, reproduction, and neurobehaviour of most of the species tested. This review concludes with a summary of impacts on the ecosystem services and functioning, particularly on pollination, soil biota, and aquatic invertebrate communities, thus reinforcing the previous WIA conclusions (van der Sluijs et al. 2015).
Collapse
Affiliation(s)
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - En-Cheng Yang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - David Gibbons
- RSPB Centre for Conservation of Science, The Lodge, Sandy, Bedfordshire, SG19 2DL, UK
| | - Francisco Sánchez-Bayo
- School of Life and Environmental Sciences, The University of Sydney, 1 Central Avenue, Eveleigh, NSW, 2015, Australia
| | - Edward Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Alexandre Aebi
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
- Anthropology Institute, University of Neuchâtel, Rue Saint-Nicolas 4, 2000, Neuchâtel, Switzerland
| | - Jeroen van der Sluijs
- Centre for the Study of the Sciences and the Humanities, University of Bergen, Postboks 7805, 5020, Bergen, Norway
- Department of Chemistry, University of Bergen, Postboks 7805, 5020, Bergen, Norway
- Copernicus Institute of Sustainable Development, Environmental Sciences, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht, The Netherlands
| | - Chris J K MacQuarrie
- Natural Resources Canada, Canadian Forest Service, 1219 Queen St. East, Sault Ste. Marie, ON, P6A 2E5, Canada
| | | | - Elizabeth Yim Long
- Department of Entomology, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
| | - Melanie McField
- Smithsonian Institution, 701 Seaway Drive Fort Pierce, Florida, 34949, USA
| | | | - Jean-Marc Bonmatin
- Centre National de la Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Rue Charles Sadron, 45071, Orléans, France.
| |
Collapse
|
12
|
Domestic Gardens Mitigate Risk of Exposure of Pollinators to Pesticides—An Urban-Rural Case Study Using a Red Mason Bee Species for Biomonitoring. SUSTAINABILITY 2020. [DOI: 10.3390/su12229427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Domestic gardens supply pollinators with valuable habitats, but the risk of exposure to pesticides has been little investigated. Artificial nesting shelters of a red mason bee species (Osmia bicornis) were placed in two suburban gardens and two commercial fruit orchards to determine the contamination of forage sources by pesticides. Larval pollen provisions were collected from a total of 14 nests. They consisted mainly of pollen from oaks (65–100% weight/sample), Brassicaceae (≤34% w/s) and fruit trees (≤1.6% w/s). Overall, 30 pesticides were detected and each sample contained a mixture of 11–21 pesticide residues. The pesticide residues were significantly lower in garden samples than in orchard samples. The difference was attributed mainly to the abundant fungicides pyrimethanil and boscalid, which were sprayed in fruit orchards and were present on average at 1004 ppb and 648 ppb in orchard samples, respectively. The results suggested that pollinators can benefit from domestic gardens by foraging from floral sources less contaminated by pesticides than in adjacent croplands.
Collapse
|
13
|
El-Nahhal Y. Pesticide residues in honey and their potential reproductive toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:139953. [PMID: 32599396 DOI: 10.1016/j.scitotenv.2020.139953] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Honey is the sweet natural substance produced by honeybees. It may be contaminated with pesticide residues due to its intensive use. Almost no reviews have addressed pesticide residues in honey, calculated a hazard index or discussed their potential reproductive toxicity. The focus of this article is primarily to summarize advances in research related to pesticide residues, estimate daily intake of pesticide residues from consuming honey only and discuss the potential reproductive toxicity associated with those residues. The results showed that 92 pesticide residues were found in honey samples from 27 countries. Six residues belong to class IA toxicity, eight residues belong to class IB toxicity, 42 residues belong to class II, 35 residues belong to class III and one residue belong to class IV toxicity. The calculated hazard indices (HIs) suggest high potential health risk by consuming honey. In addition, residues found in honey are known to impair semen quality among exposed individuals and experimental animal models. In conclusion, consumption of honey as one of many food items contaminated with pesticide residues may induce male and female reproductive toxicity in consumers.
Collapse
Affiliation(s)
- Yasser El-Nahhal
- Environmental Chemistry and Toxicology, Faculty of Science, The Islamic University-Gaza, Palestine.
| |
Collapse
|
14
|
Mair MM, Kattwinkel M, Jakoby O, Hartig F. The Minimum Detectable Difference (MDD) Concept for Establishing Trust in Nonsignificant Results: A Critical Review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2109-2123. [PMID: 32786096 DOI: 10.1002/etc.4847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/11/2020] [Accepted: 08/06/2020] [Indexed: 05/21/2023]
Abstract
Current regulatory guidelines for pesticide risk assessment recommend that nonsignificant results should be complemented by the minimum detectable difference (MDD), a statistical indicator that is used to decide whether the experiment could have detected biologically relevant effects. We review the statistical theory of the MDD and perform simulations to understand its properties and error rates. Most importantly, we compare the skill of the MDD in distinguishing between true and false negatives (i.e., type II errors) with 2 alternatives: the minimum detectable effect (MDE), an indicator based on a post hoc power analysis common in medical studies; and confidence intervals (CIs). Our results demonstrate that MDD and MDE only differ in that the power of the MDD depends on the sample size. Moreover, although both MDD and MDE have some skill in distinguishing between false negatives and true absence of an effect, they do not perform as well as using CI upper bounds to establish trust in a nonsignificant result. The reason is that, unlike the CI, neither MDD nor MDE consider the estimated effect size in their calculation. We also show that MDD and MDE are no better than CIs in identifying larger effects among the false negatives. We conclude that, although MDDs are useful, CIs are preferable for deciding whether to treat a nonsignificant test result as a true negative, or for determining an upper bound for an unknown true effect. Environ Toxicol Chem 2020;39:2109-2123. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Magdalena M Mair
- Faculty of Biology and Pre-Clinical Medicine, Theoretical Ecology, University of Regensburg, Regensburg, Germany
| | - Mira Kattwinkel
- Institute for Environmental Sciences (iES), University of Koblenz-Landau, Landau, Germany
| | | | - Florian Hartig
- Faculty of Biology and Pre-Clinical Medicine, Theoretical Ecology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
15
|
Siefert P, Hota R, Ramesh V, Grünewald B. Chronic within-hive video recordings detect altered nursing behaviour and retarded larval development of neonicotinoid treated honey bees. Sci Rep 2020; 10:8727. [PMID: 32457387 PMCID: PMC7251098 DOI: 10.1038/s41598-020-65425-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 04/29/2020] [Indexed: 12/27/2022] Open
Abstract
Risk evaluations for agricultural chemicals are necessary to preserve healthy populations of honey bee colonies. Field studies on whole colonies are limited in behavioural research, while results from lab studies allow only restricted conclusions on whole colony impacts. Methods for automated long-term investigations of behaviours within comb cells, such as brood care, were hitherto missing. In the present study, we demonstrate an innovative video method that enables within-cell analysis in honey bee (Apis mellifera) observation hives to detect chronic sublethal neonicotinoid effects of clothianidin (1 and 10 ppb) and thiacloprid (200 ppb) on worker behaviour and development. In May and June, colonies which were fed 10 ppb clothianidin and 200 ppb thiacloprid in syrup over three weeks showed reduced feeding visits and duration throughout various larval development days (LDDs). On LDD 6 (capping day) total feeding duration did not differ between treatments. Behavioural adaptation was exhibited by nurses in the treatment groups in response to retarded larval development by increasing the overall feeding timespan. Using our machine learning algorithm, we demonstrate a novel method for detecting behaviours in an intact hive that can be applied in a versatile manner to conduct impact analyses of chemicals, pests and other stressors.
Collapse
Affiliation(s)
- Paul Siefert
- Institut für Bienenkunde, Polytechnische Gesellschaft Frankfurt am Main, Goethe-Universität, Frankfurt am Main, Germany.
| | - Rudra Hota
- Center for Cognition and Computation, Institut für Informatik, Goethe-Universität, Frankfurt am Main, Germany
| | - Visvanathan Ramesh
- Center for Cognition and Computation, Institut für Informatik, Goethe-Universität, Frankfurt am Main, Germany
| | - Bernd Grünewald
- Institut für Bienenkunde, Polytechnische Gesellschaft Frankfurt am Main, Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Bargar TA, Hladik ML, Daniels JC. Uptake and toxicity of clothianidin to monarch butterflies from milkweed consumption. PeerJ 2020; 8:e8669. [PMID: 32195048 PMCID: PMC7069410 DOI: 10.7717/peerj.8669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/30/2020] [Indexed: 11/20/2022] Open
Abstract
Recent concern for the adverse effects from neonicotinoid insecticides has centered on risk for insect pollinators in general and bees specifically. However, natural resource managers are also concerned about the risk of neonicotinoids to conservation efforts for the monarch butterfly (Danaus plexippus) and need additional data to help estimate risk for wild monarch butterflies exposed to those insecticides. In the present study, monarch butterfly larvae were exposed in the laboratory to clothianidin via contaminated milkweed plants from hatch until pupation, and the effects upon larval survival, larval growth, pupation success, and adult size were measured. Soils dosed with a granular insecticide product led to mean clothianidin concentrations of 10.8–2,193 ng/g in milkweed leaves and 5.8–58.0 ng/g in larvae. Treatment of soils also led to clothianidin concentrations of 2.6–5.1 ng/g in adult butterflies indicating potential for transfer of systemic insecticides from the soil through plants and larvae to adult butterflies. Estimated LC50s for total mortality (combined mortality of larvae and pupae) and EC50 for larval growth were variable but higher than the majority of concentrations reported in the literature for clothianidin contamination of leaves.
Collapse
Affiliation(s)
- Timothy A Bargar
- Wetland and Aquatic Research Center, U.S. Geological Survey, Gainesville, FL, USA
| | - Michelle L Hladik
- California Water Science Center, U.S. Geological Survey, Sacramento, CA, USA
| | - Jaret C Daniels
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA.,Florida Museum of Natural History, Gainesville, FL, USA
| |
Collapse
|
17
|
Uhl P, Brühl CA. The Impact of Pesticides on Flower-Visiting Insects: A Review with Regard to European Risk Assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2355-2370. [PMID: 31408220 DOI: 10.1002/etc.4572] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/22/2019] [Accepted: 08/08/2019] [Indexed: 05/28/2023]
Abstract
Flower-visiting insects (FVIs) are an ecologically diverse group of mobile, flying species that should be protected from pesticide effects according to European policy. However, there is an ongoing decline of FVI species, partly caused by agricultural pesticide applications. Therefore, the risk assessment framework needs to be improved. We synthesized the peer-reviewed literature on FVI groups and their ecology, habitat, exposure to pesticides, and subsequent effects. The results show that FVIs are far more diverse than previously thought. Their habitat, the entire agricultural landscape, is potentially contaminated with pesticides through multiple pathways. Pesticide exposure of FVIs at environmentally realistic levels can cause population-relevant adverse effects. This knowledge was used to critically evaluate the European regulatory framework of exposure and effect assessment. The current risk assessment should be amended to incorporate specific ecological properties of FVIs, that is, traits. We present data-driven tools to improve future risk assessments by making use of trait information. There are major knowledge gaps concerning the general investigation of groups other than bees, the collection of comprehensive data on FVI groups and their ecology, linking habitat to FVI exposure, and study of previously neglected complex population effects. This is necessary to improve our understanding of FVIs and facilitate the development of a more protective FVI risk assessment. Environ Toxicol Chem 2019;38:2355-2370. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Philipp Uhl
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Carsten A Brühl
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| |
Collapse
|
18
|
Gierer F, Vaughan S, Slater M, Thompson HM, Elmore JS, Girling RD. A review of the factors that influence pesticide residues in pollen and nectar: Future research requirements for optimising the estimation of pollinator exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:236-247. [PMID: 30893636 DOI: 10.1016/j.envpol.2019.03.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
In recent years, the impact of Plant Protection Products (PPPs) on insect pollinator decline has stimulated significant amounts of research, as well as political and public interest. PPP residues have been found in various bee-related matrices, resulting in governmental bodies worldwide releasing guidance documents on methods for the assessment of the overall risk of PPPs to different bee species. An essential part of these risk assessments are PPP residues found in pollen and nectar, as they represent a key route of exposure. However, PPP residue values in these matrices exhibit large variations and are not available for many PPPs and crop species combinations, which results in inaccurate estimations and uncertainties in risk evaluation. Additionally, residue studies on pollen and nectar are expensive and practically challenging. An extrapolation between different cropping scenarios and PPPs is not yet justified, as the behaviour of PPPs in pollen and nectar is poorly understood. Therefore, this review aims to contribute to a better knowledge and understanding of the fate of PPP residues in pollen and nectar and to outline knowledge gaps and future research needs. The literature suggests that four primary factors, the crop type, the application method, the physicochemical properties of a compound and the environmental conditions have the greatest influence on PPP residues in pollen and nectar. However, these factors consist of many sub-factors and initial effects may be disguised by different sampling methodologies, impeding their exact characterisation. Moreover, knowledge about these factors is ambiguous and restricted to a few compounds and plant species. We propose that future research should concentrate on identifying relationships and common features amongst various PPP applications and crops, as well as an overall quantification of the described parameters; in order to enable a reliable estimation of PPP residues in pollen, nectar and other bee matrices.
Collapse
Affiliation(s)
- Fiona Gierer
- School of Agriculture, Policy and Development, University of Reading, Reading, UK.
| | - Sarah Vaughan
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire, UK
| | - Mark Slater
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire, UK
| | - Helen M Thompson
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire, UK
| | - J Stephen Elmore
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Robbie D Girling
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| |
Collapse
|
19
|
Kenna D, Cooley H, Pretelli I, Ramos Rodrigues A, Gill SD, Gill RJ. Pesticide exposure affects flight dynamics and reduces flight endurance in bumblebees. Ecol Evol 2019; 9:5637-5650. [PMID: 31160987 PMCID: PMC6540668 DOI: 10.1002/ece3.5143] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 11/18/2022] Open
Abstract
The emergence of agricultural land use change creates a number of challenges that insect pollinators, such as eusocial bees, must overcome. Resultant fragmentation and loss of suitable foraging habitats, combined with pesticide exposure, may increase demands on foraging, specifically the ability to collect or reach sufficient resources under such stress. Understanding effects that pesticides have on flight performance is therefore vital if we are to assess colony success in these changing landscapes. Neonicotinoids are one of the most widely used classes of pesticide across the globe, and exposure to bees has been associated with reduced foraging efficiency and homing ability. One explanation for these effects could be that elements of flight are being affected, but apart from a couple of studies on the honeybee (Apis mellifera), this has scarcely been tested. Here, we used flight mills to investigate how exposure to a field realistic (10 ppb) acute dose of imidacloprid affected flight performance of a wild insect pollinator-the bumblebee, Bombus terrestris audax. Intriguingly, observations showed exposed workers flew at a significantly higher velocity over the first ¾ km of flight. This apparent hyperactivity, however, may have a cost because exposed workers showed reduced flight distance and duration to around a third of what control workers were capable of achieving. Given that bumblebees are central place foragers, impairment to flight endurance could translate to a decline in potential forage area, decreasing the abundance, diversity, and nutritional quality of available food, while potentially diminishing pollination service capabilities.
Collapse
Affiliation(s)
- Daniel Kenna
- Department of Life SciencesImperial College LondonSilwood ParkAscotBerkshireUK
| | - Hazel Cooley
- Department of Life SciencesImperial College LondonSilwood ParkAscotBerkshireUK
| | - Ilaria Pretelli
- Department of Life SciencesImperial College LondonSilwood ParkAscotBerkshireUK
- Dipartimento di BiologiaUniversità di PadovaPadovaItaly
- Department of Human Behaviour, Ecology, and CultureMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Ana Ramos Rodrigues
- Department of Life SciencesImperial College LondonSilwood ParkAscotBerkshireUK
| | - Steve D. Gill
- Department of Life SciencesImperial College LondonSilwood ParkAscotBerkshireUK
| | - Richard J. Gill
- Department of Life SciencesImperial College LondonSilwood ParkAscotBerkshireUK
| |
Collapse
|
20
|
Bargańska Ż, Konieczka P, Namieśnik J. Comparison of Two Methods for the Determination of Selected Pesticides in Honey and Honeybee Samples. Molecules 2018; 23:molecules23102582. [PMID: 30304845 PMCID: PMC6222677 DOI: 10.3390/molecules23102582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 12/18/2022] Open
Abstract
Developed and validated analytical methods for the determination of a wide spectrum of pesticide residues in honey and honeybee samples after the modification of QuEChERS extraction in combination with gas chromatography–tandem quadrupole mass spectrometry (GC-MS/MS) and liquid chromatography–tandem quadrupole mass spectrometry (LC-MS/MS) were discussed and compared. The developed methods were evaluated regarding the utilized equipment and reagents using Eco-Scale and compared in terms of extraction time, accuracy, precision, sensitivity and versatility, with similar procedures. The results proved that the QuEChERS protocol in combination with LC and GC techniques fulfills the requirements of green analytical chemistry, so it can be used as a tool in environmental monitoring. The recovery was 85–116% for honey and 85.5–103.5% for honeybee samples. The developed methods were successfully applied in monitoring real samples collected from three districts of Pomerania in Poland. Analysis of real samples revealed the presence of the following pesticides: bifenthrin, fenpyroximate, methidathione, spinosad, thiamethoxam, triazophos, metconazole and cypermethrin at levels higher than the MRLs established by the EU.
Collapse
Affiliation(s)
- Żaneta Bargańska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology (GUT), Narutowicza 11/12 street, 80-233 Gdańsk, Poland.
| | - Piotr Konieczka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology (GUT), Narutowicza 11/12 street, 80-233 Gdańsk, Poland.
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology (GUT), Narutowicza 11/12 street, 80-233 Gdańsk, Poland.
| |
Collapse
|
21
|
Siede R, Meixner MD, Almanza MT, Schöning R, Maus C, Büchler R. A long-term field study on the effects of dietary exposure of clothianidin to varroosis-weakened honey bee colonies. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:772-783. [PMID: 29725884 PMCID: PMC6133000 DOI: 10.1007/s10646-018-1937-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/06/2018] [Indexed: 05/04/2023]
Abstract
Clothianidin is a commonly used systemic insecticide in seed treatments. Residues of clothianidin can occur in nectar and pollen as a result of within-plant-translocation. Foraging bees can collect contaminated nectar or pollen. Concerns have been brought forward that exposure to pesticide residues might affect colonies especially if they are weakened by varroosis. However, there are few scientific studies investigating such multiple-stressor scenarios in the context of the entire colony. To close this gapa field trial with 24 colonies was set up. The study design comprised four groups of six colonies each fed with uncontaminated sugar syrup ('C0'), or syrup spiked with 10 μg L-1 clothianidin ('C10'), 50 μg L-1 clothianidin ('C50') or 200 μg L-1 clothianidin ('C200'). C10 represented a residue concentration that may exceptionally occur and therefore a worst-case scenario, the higher dietary concentrations exceed and do not reflect fieldrealistic levels. A substantial load of 8 mites of Varroa destructor per ten gram bees in autumn was adjusted. The colonies were followed up for 328 days. The amount of brood and the strength of each colony were regularly assessed. Colony health, bee mortality, overwintering success, hive weights, and levels of in-hive residues were determined. Varroosis turned out to be the significant key factor for the endpoint colony strength. Clothianidin did not have a statistically significant impact on C0, C10 and C50 colonies. No statistical evidence was found for an interaction between varroosis andexposure to clothianidin.
Collapse
Affiliation(s)
- Reinhold Siede
- Landesbetrieb Landwirtschaft Hessen, Bieneninstitut, Erlenstr. 9, 35274, Kirchhain, Germany.
| | - Marina D Meixner
- Landesbetrieb Landwirtschaft Hessen, Bieneninstitut, Erlenstr. 9, 35274, Kirchhain, Germany
| | | | - Ralf Schöning
- Bayer AG, Alfred-Nobel-Str. 50, 40789, Monheim, Germany
| | | | - Ralph Büchler
- Landesbetrieb Landwirtschaft Hessen, Bieneninstitut, Erlenstr. 9, 35274, Kirchhain, Germany
| |
Collapse
|
22
|
Nicholls E, Botías C, Rotheray EL, Whitehorn P, David A, Fowler R, David T, Feltham H, Swain JL, Wells P, Hill EM, Osborne JL, Goulson D. Monitoring Neonicotinoid Exposure for Bees in Rural and Peri-urban Areas of the U.K. during the Transition from Pre- to Post-moratorium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9391-9402. [PMID: 29952204 DOI: 10.1021/acs.est.7b06573] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Concerns regarding the impact of neonicotinoid exposure on bee populations recently led to an EU-wide moratorium on the use of certain neonicotinoids on flowering crops. Currently, evidence regarding the impact, if any, the moratorium has had on bees' exposure is limited. We sampled pollen and nectar from bumblebee colonies in rural and peri-urban habitats in three U.K. regions: Stirlingshire, Hertfordshire, and Sussex. Colonies were sampled over three years: prior to the ban (2013), during the initial implementation when some seed-treated winter-sown oilseed rape was still grown (2014), and following the ban (2015). To compare species-level differences, in 2014 only, honeybee colonies in rural habitats were also sampled. Over half of all samples were found to be contaminated ( n = 408), with thiamethoxam being the compound detected at the highest concentrations in honeybee- (up to 2.29 ng/g in nectar in 2014, median ≤ 0.1 ng/g, n = 79) and bumblebee-collected pollen and nectar (up to 38.77 ng/g in pollen in 2013, median ≤ 0.12 ng/g, n = 76). Honeybees were exposed to higher concentrations of neonicotinoids than bumblebees in 2014. While neonicotinoid exposure for rural bumblebees declined post-ban (2015), suggesting a positive impact of the moratorium, the risk of neonicotinoid exposure for bumblebees in peri-urban habitats remained largely the same between 2013 and 2015.
Collapse
Affiliation(s)
| | - Cristina Botías
- School of Life Sciences , University of Sussex , Falmer BN1 9QG , U.K
| | - Ellen L Rotheray
- School of Life Sciences , University of Sussex , Falmer BN1 9QG , U.K
| | - Penelope Whitehorn
- School of Natural Sciences , University of Stirling , Stirling FK9 4LA , U.K
| | - Arthur David
- School of Life Sciences , University of Sussex , Falmer BN1 9QG , U.K
| | - Robert Fowler
- School of Life Sciences , University of Sussex , Falmer BN1 9QG , U.K
| | - Thomas David
- School of Life Sciences , University of Sussex , Falmer BN1 9QG , U.K
- Rothamsted Research , Harpenden , Hertfordshire AL5 2JQ , U.K
| | - Hannah Feltham
- School of Natural Sciences , University of Stirling , Stirling FK9 4LA , U.K
| | | | - Patricia Wells
- Rothamsted Research , Harpenden , Hertfordshire AL5 2JQ , U.K
| | - Elizabeth M Hill
- School of Life Sciences , University of Sussex , Falmer BN1 9QG , U.K
| | - Juliet L Osborne
- Environment and Sustainability Institute , University of Exeter , Penryn TR10 9FE , U.K
| | - Dave Goulson
- School of Life Sciences , University of Sussex , Falmer BN1 9QG , U.K
| |
Collapse
|
23
|
Böhme F, Bischoff G, Zebitz CPW, Rosenkranz P, Wallner K. Pesticide residue survey of pollen loads collected by honeybees (Apis mellifera) in daily intervals at three agricultural sites in South Germany. PLoS One 2018; 13:e0199995. [PMID: 29979756 PMCID: PMC6034819 DOI: 10.1371/journal.pone.0199995] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 06/18/2018] [Indexed: 01/16/2023] Open
Abstract
In agricultural landscapes honeybees and other pollinators are exposed to pesticides, often surveyed by residue analysis of bee bread. However, bee bread is a mixture of pollen pellets of different plants collected over a longer time period. Therefore, pesticide content in the hive varies with plant species and time of pollen collection. Hence, the analysis of bee bread is an approximate approach to gain information on detailed pesticide exposure during the agronomic active season. As high-resolution data is missing, we carried out a pesticide residue survey over five years (2012–2016) of daily collected pollen pellets at three agricultural distinct sites in southern Germany. 281 single day pollen samples were selected and subjected to a multi-pesticide residue analysis. Pesticide contaminations of pollen differed between the sites. Intensive pesticide exposure can be seen by high pesticide concentrations as well as a high amount of different pesticides detected. During the five years of observation 73 different pesticides were found, of which 84% are characterized as non-harmful to honeybees. To estimate pesticide risks for honeybees, the pollen hazard quotient (PHQ) was calculated. Even though pesticides were detected in sublethal concentrations, we found substances not supposed to be exposed to honey bees, indicating the necessity for further improvement of seed treatments and increasing awareness of flowering shrubs, field margins and pesticide drift. Additionally, an in-depth analysis of nine pollen samples, divided into sub-fractions dominated by single plant species, revealed even higher concentrations in single crops for some pesticides. We give precise residue data of 1,657 single pesticide detections, which should be used for realistic laboratory and field tests.
Collapse
Affiliation(s)
- Franziska Böhme
- University of Hohenheim, Apicultural State Institute, Stuttgart, Germany
| | - Gabriela Bischoff
- Julius Kühn-Institute, Institute for Bee Protection, Berlin, Germany
| | - Claus P W Zebitz
- University of Hohenheim, Institute of Phytomedicine, Applied Entomology, Stuttgart, Germany
| | - Peter Rosenkranz
- University of Hohenheim, Apicultural State Institute, Stuttgart, Germany
| | - Klaus Wallner
- University of Hohenheim, Apicultural State Institute, Stuttgart, Germany
| |
Collapse
|
24
|
Zhang Q, Li Z, Chang CH, Lou JL, Zhao MR, Lu C. Potential human exposures to neonicotinoid insecticides: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:71-81. [PMID: 29414376 DOI: 10.1016/j.envpol.2017.12.101] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/21/2017] [Accepted: 12/25/2017] [Indexed: 05/19/2023]
Abstract
Due to their systemic character and high efficacy to insect controls, neonicotinoid insecticides (neonics) have been widely used in global agriculture since its introduction in early 1990. Recent studies have indicated that neonics may be ubiquitous, have longer biological half-lives in the environment once applied, and therefore implicitly suggested the increasing probability for human exposure to neonics. Despite of neonics' persistent characters and widespread uses, scientific literature in regard of pathways in which human exposure could occur is relatively meager. In this review, we summarized results from peer-reviewed articles published prior to 2017 that address potential human exposures through ingestion and inhalation, as well as results from human biomonitoring studies. In addition, we proposed the use of relative potency factor approach in order to facilitate the assessment of concurrent exposure to a mixture of neonics with similar chemical structures and toxicological endpoints. We believe that the scientific information that we presented in this review will aid to future assessment of total neonic exposure and subsequently human health risk characterization.
Collapse
Affiliation(s)
- Q Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Providence, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston MA, USA
| | - Z Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Providence, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston MA, USA
| | - C H Chang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston MA, USA
| | - J L Lou
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - M R Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Providence, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
| | - C Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston MA, USA; College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
25
|
Bargańska Ż, Lambropoulou D, Namieśnik J. Problems and Challenges to Determine Pesticide Residues in Bumblebees. Crit Rev Anal Chem 2018; 48:447-458. [DOI: 10.1080/10408347.2018.1445517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Żaneta Bargańska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Dimitra Lambropoulou
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
26
|
Bailey RA, Greenwood JJD. Effects of neonicotinoids on Bees: an invalid experiment. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:1-7. [PMID: 29138969 DOI: 10.1007/s10646-017-1877-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/04/2017] [Indexed: 06/07/2023]
Affiliation(s)
- R A Bailey
- School of Mathematics and Statistics, University of St Andrews, Fife, KY16 8HT, Scotland.
| | - J J D Greenwood
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, Fife, KY16 9LZ, Scotland
| |
Collapse
|
27
|
Heimbach F, Gao Z, Blenau W, Ratte HT. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: justification of study design and statistical analysis. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:8-11. [PMID: 29147821 DOI: 10.1007/s10646-017-1878-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Affiliation(s)
| | | | - Wolfgang Blenau
- Institut für Bienenkunde (Polytechnische Gesellschaft), Goethe University Frankfurt, Oberursel, Germany.
| | - Hans-Toni Ratte
- Aachen University of Technology (RWTH), Institute for Environmental Research, Aachen, Germany
| |
Collapse
|
28
|
Wood TJ, Goulson D. The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17285-17325. [PMID: 28593544 PMCID: PMC5533829 DOI: 10.1007/s11356-017-9240-x] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/09/2017] [Indexed: 05/20/2023]
Abstract
Neonicotinoid pesticides were first introduced in the mid-1990s, and since then, their use has grown rapidly. They are now the most widely used class of insecticides in the world, with the majority of applications coming from seed dressings. Neonicotinoids are water-soluble, and so can be taken up by a developing plant and can be found inside vascular tissues and foliage, providing protection against herbivorous insects. However, only approximately 5% of the neonicotinoid active ingredient is taken up by crop plants and most instead disperses into the wider environment. Since the mid-2000s, several studies raised concerns that neonicotinoids may be having a negative effect on non-target organisms, in particular on honeybees and bumblebees. In response to these studies, the European Food Safety Authority (EFSA) was commissioned to produce risk assessments for the use of clothianidin, imidacloprid and thiamethoxam and their impact on bees. These risk assessments concluded that the use of these compounds on certain flowering crops poses a high risk to bees. On the basis of these findings, the European Union adopted a partial ban on these substances in May 2013. The purpose of the present paper is to collate and summarise scientific evidence published since 2013 that investigates the impact of neonicotinoids on non-target organisms. Whilst much of the recent work has focused on the impact of neonicotinoids on bees, a growing body of evidence demonstrates that persistent, low levels of neonicotinoids can have negative impacts on a wide range of free-living organisms.
Collapse
Affiliation(s)
- Thomas James Wood
- Department of Entomology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Dave Goulson
- School of Life Sciences, The University of Sussex, Falmer, East Sussex, BN1 9QG, UK
| |
Collapse
|
29
|
Blacquière T, van der Steen JJM. Three years of banning neonicotinoid insecticides based on sub-lethal effects: can we expect to see effects on bees? PEST MANAGEMENT SCIENCE 2017; 73:1299-1304. [PMID: 28374565 PMCID: PMC5488186 DOI: 10.1002/ps.4583] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/21/2017] [Accepted: 03/29/2017] [Indexed: 05/15/2023]
Abstract
The 2013 EU ban of three neonicotinoids used in seed coating of pollinator attractive crops was put in place because of concern about declining wild pollinator populations and numbers of honeybee colonies. It was also concluded that there is an urgent need for good field data to fill knowledge gaps. In the meantime such data have been generated. Based on recent literature we question the existence of recent pollinator declines and their possible link with the use of neonicotinoids. Because of temporal non-coincidence we conclude that declines of wild pollinators and of honeybees are not likely caused by neonicotinoids. Even if bee decline does occur and if there is a causal relationship with the use of neonicotinoids, we argue that it is not possible on such short term to evaluate the effects of the 2013 ban. In order to supply future debate with realistic (field) data and to discourage extrapolating the effects of studies using overdoses that are not of environmental relevance, we propose - in addition to field studies performed by the chemical industry - to use the 'semi-field worst case' treated artificial diet studies approach to free flying colonies in the field. This kind of study may provide realistic estimates for risk and be useful to study realistic interactions with non-pesticide stressors. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Tjeerd Blacquière
- Wageningen Plant ResearchWageningen University & ResearchWageningenthe Netherlands
| | | |
Collapse
|
30
|
Rolke D, Fuchs S, Grünewald B, Gao Z, Blenau W. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: effects on honey bees (Apis mellifera). ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1648-1665. [PMID: 27644949 PMCID: PMC5093180 DOI: 10.1007/s10646-016-1725-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/02/2016] [Indexed: 05/12/2023]
Abstract
Possible effects of clothianidin seed-treated oilseed rape on honey bee colonies were investigated in a large-scale monitoring project in Northern Germany, where oilseed rape usually comprises 25-33 % of the arable land. For both reference and test sites, six study locations were selected and eight honey bee hives were placed at each location. At each site, three locations were directly adjacent to oilseed rape fields and three locations were situated 400 m away from the nearest oilseed rape field. Thus, 96 hives were exposed to fully flowering oilseed rape crops. Colony sizes and weights, the amount of honey harvested, and infection with parasites and diseases were monitored between April and September 2014. The percentage of oilseed rape pollen was determined in pollen and honey samples. After oilseed rape flowering, the hives were transferred to an extensive isolated area for post-exposure monitoring. Total numbers of adult bees and brood cells showed seasonal fluctuations, and there were no significant differences between the sites. The honey, which was extracted at the end of the exposure phase, contained 62.0-83.5 % oilseed rape pollen. Varroa destructor infestation was low during most of the course of the study but increased at the end of the study due to flumethrin resistance in the mite populations. In summary, honey bee colonies foraging in clothianidin seed-treated oilseed rape did not show any detrimental symptoms as compared to colonies foraging in clothianidin-free oilseed rape. Development of colony strength, brood success as well as honey yield and pathogen infection were not significantly affected by clothianidin seed-treatment during this study.
Collapse
Affiliation(s)
- Daniel Rolke
- Institut für Bienenkunde (Polytechnische Gesellschaft), Goethe University Frankfurt, Oberursel, Germany
| | - Stefan Fuchs
- Institut für Bienenkunde (Polytechnische Gesellschaft), Goethe University Frankfurt, Oberursel, Germany
| | - Bernd Grünewald
- Institut für Bienenkunde (Polytechnische Gesellschaft), Goethe University Frankfurt, Oberursel, Germany
| | | | - Wolfgang Blenau
- Institut für Bienenkunde (Polytechnische Gesellschaft), Goethe University Frankfurt, Oberursel, Germany.
| |
Collapse
|
31
|
Peters B, Gao Z, Zumkier U. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: effects on red mason bees (Osmia bicornis). ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1679-1690. [PMID: 27709397 PMCID: PMC5093198 DOI: 10.1007/s10646-016-1729-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/14/2016] [Indexed: 05/12/2023]
Abstract
The aim of this study was to investigate the effects of Elado® (10 g clothianidin & 2 g beta-cyfluthrin/kg seed)-dressed oilseed rape on the development and reproduction of mason bees (Osmia bicornis) as part of a large-scale monitoring field study in Northern Germany, where oilseed rape is usually cultivated at 25-33 % of the arable land. Both reference and test sites comprised 65 km2 in which no other crops attractive to pollinating insects were present. Six study locations were selected per site and three nesting shelters were placed at each location. Of these locations, three locations were directly adjacent to oilseed rape fields, while the other three locations were situated 100 m distant from the nearest oilseed rape field. At each location, 1500 cocoons of O. bicornis were placed into the central nesting shelter. During the exposure phase, nest building activities and foraging behaviour were assessed repeatedly. Cocoons were harvested in autumn to assess parasitization and reproduction including larval development. The following spring, the emergence of the next generation of adults from cocoons was monitored. High reproductive output and low parasitization rates indicated that Elado®-dressed oilseed rape did not cause any detrimental effects on the development or reproduction of mason bees.
Collapse
|
32
|
Heimbach F, Russ A, Schimmer M, Born K. Large-scale monitoring of effects of clothianidin dressed oilseed rape seeds on pollinating insects in Northern Germany: implementation of the monitoring project and its representativeness. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1630-1647. [PMID: 27678527 PMCID: PMC5093193 DOI: 10.1007/s10646-016-1724-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/02/2016] [Indexed: 05/04/2023]
Abstract
Monitoring studies at the landscape level are complex, expensive and difficult to conduct. Many aspects have to be considered to avoid confounding effects which is probably the reason why they are not regularly performed in the context of risk assessments of plant protection products to pollinating insects. However, if conducted appropriately their contribution is most valuable. In this paper we identify the requirements of a large-scale monitoring study for the assessment of side-effects of clothianidin seed-treated winter oilseed rape on three species of pollinating insects (Apis mellifera, Bombus terrestris and Osmia bicornis) and present how these requirements were implemented. Two circular study sites were delineated next to each other in northeast Germany and comprised almost 65 km2 each. At the reference site, study fields were drilled with clothianidin-free OSR seeds while at the test site the oilseed rape seeds contained a coating with 10 g clothianidin and 2 g beta-cyfluthrin per kg seeds (Elado®). The comparison of environmental conditions at the study sites indicated that they are as similar as possible in terms of climate, soil, land use, history and current practice of agriculture as well as in availability of oilseed rape and non-crop bee forage. Accordingly, local environmental conditions were considered not to have had any confounding effect on the results of the monitoring of the bee species. Furthermore, the study area was found to be representative for other oilseed rape cultivation regions in Europe.
Collapse
Affiliation(s)
| | - Anja Russ
- tier3 solutions GmbH, Leverkusen, Germany.
| | | | - Katrin Born
- Spatial Business Integration GmbH, Darmstadt, Germany
| |
Collapse
|
33
|
Schmuck R, Lewis G. Review of field and monitoring studies investigating the role of nitro-substituted neonicotinoid insecticides in the reported losses of honey bee colonies (Apis mellifera). ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1617-1629. [PMID: 27709399 PMCID: PMC5093195 DOI: 10.1007/s10646-016-1734-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/22/2016] [Indexed: 05/20/2023]
Abstract
The nitro-substituted neonicotinoid insecticides, which include imidacloprid, thiamethoxam and clothianidin, are widely used to control a range of important agricultural pests both by foliar applications and also as seed dressings and by soil application. Since they exhibit systemic properties, exposure of bees may occur as a result of residues present in the nectar and/or pollen of seed- or soil-treated crop plants and so they have been the subject of much debate about whether they cause adverse effects in pollinating insects under field conditions. Due to these perceived concerns, the use of the three neonicotinoids imidacloprid, clothianidin and thiamethoxam has been temporarily suspended in the European Union for seed treatment, soil application and foliar treatment in crops attractive to bees. Monitoring data from a number of countries are available to assess the presence of neonicotinoid residues in honey bee samples and possible impacts at the colony level and these are reviewed here together with a number of field studies which have looked at the impact of clothiandin on honey bees in relation to specific crop use and in particular with oilseed rape. Currently there is considerable uncertainty with regards to the regulatory testing requirements for field studies. Accordingly, a testing protocol was developed to address any acute and chronic risks from oilseed rape seeds containing a coating with 10 g clothianidin and 2 g beta-cyfluthrin per kg seeds (Elado®) for managed honey bee (Apis mellifera) colonies, commercially bred bumble bee (Bombus terrestris) colonies and red mason bees (Osmia bicornis) as a representative solitary bee species. This is described here together with a summary of the results obtained as an introduction to the study details given in the following papers in this issue.
Collapse
|
34
|
Sterk G, Peters B, Gao Z, Zumkier U. Large-scale monitoring of effects of clothianidin-dressed OSR seeds on pollinating insects in Northern Germany: effects on large earth bumble bees (Bombus terrestris). ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1666-1678. [PMID: 27678526 PMCID: PMC5093213 DOI: 10.1007/s10646-016-1730-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/14/2016] [Indexed: 05/04/2023]
Abstract
The aim of this study was to investigate the effects of Elado®-dressed winter oilseed rape (OSR, 10 g clothianidin & 2 g beta-cyfluthrin/kg seed) on the development, reproduction and behaviour of large earth bumble bees (Bombus terrestris) as part of a large-scale monitoring field study in Northern Germany, where OSR is usually cultivated at 25-33 % of the arable land. Both reference and test sites comprised 65 km2 in which no other crops attractive to pollinating insects were present. Six study locations were selected per site and 10 bumble bee hives were placed at each location. At each site, three locations were directly adjacent to OSR fields and three locations were situated 400 m distant from the nearest OSR field. The development of colonies was monitored from the beginning of OSR flowering in April until June 2014. Pollen from returning foragers was analysed for its composition. An average of 44 % of OSR pollen was found in pollen loads of bumble bees indicating that OSR was a major resource for the colonies. At the end of OSR flowering, hives were transferred to a nature reserve until the end of the study. Colony development in terms of hive weight and the number of workers showed a typical course with no statistically significant differences between the sites. Reproductive output was comparatively high and not negatively affected by the exposure to treated OSR. In summary, Elado®-dressed OSR did not cause any detrimental effects on the development or reproduction of bumble bee colonies.
Collapse
Affiliation(s)
- Guido Sterk
- IPM Impact, Gierkensstraat 21, Kuringen, 3511, Belgium
| | | | | | | |
Collapse
|