1
|
Kalugina OV, Afanasyeva LV, Mikhailova TA. Anatomical and morphological changes in Pinus sylvestris and Larix sibirica needles under impact of emissions from a large aluminum enterprise. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:66-84. [PMID: 38183574 DOI: 10.1007/s10646-023-02723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/08/2024]
Abstract
Species-specific anatomical and morphological characteristics of Pinus sylvestris and Larix sibirica needles were studied at different levels of tree stand pollution by aluminum smelter emissions. The anatomical characteristics of the needle were studied using light microscopy. The level of tree stand pollution was determined using the cluster analysis outcomes of the pollutant elements content (fluorine, sulfur, and heavy metals) in the needles. Four levels of tree stand pollution were separated: low, moderate, high, and critical, as well as background tree stand in unpolluted areas. It was found that the state of tree phytomass deteriorated with increasing levels of pollution (from low to critical): pine crown defoliation increased to 85%, and larch defoliation increased to 65%. The life span of pine needles was reduced to 2-3 years, with a background value of 6-7 years. The change of morphological parameters was more pronounced in P. sylvestris: the weight and length of the 2-year-old shoot decreased by 2.7-3.1 times compared to the background values; the weight of needles on the shoot and the number of needle pairs on the shoot-by 1.9-2.1 times. The length of the needle and shoot and the number of L. sibirica brachyblasts decreased by 1.8-1.9 times. The anatomical parameters of the needle also changed to a greater extent in P. sylvestris. Up to the high level of tree pollution, we observed a decrease in the cross-sectional area of the needle, central cylinder, vascular bundle, area and thickness of mesophyll, number and diameter of resin ducts by 18-66% compared to background values. At the critical pollution level, when the content of pollutant elements in pine needles reached maximum values, the anatomical parameters of the remaining few green needles were close to background values. In our opinion, this may be due to the activation of mechanisms aimed at maintaining the viability of trees. A reduction in thickness and area of assimilation tissue in the L. sibirica needle was detected only at the critical pollution level. An upward trend in these parameters was found at low, medium, and high pollution levels of tree stand, which may indicate an adaptive nature. The results suggested that at a similar pollution level of trees, the greatest amount of negative anatomical and morphological changes were recorded in pine needles, which indicates a greater sensitivity of this species to technogenic emissions.
Collapse
Affiliation(s)
- Olga Vladimirovna Kalugina
- Laboratory of Natural and Anthropogenic Ecosystems, Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences, Lermontov str., 132, 664033, Irkutsk, Russia
| | - Larisa Vladimirovna Afanasyeva
- Laboratory of Floristics and Geobotany, Institute of General and Experimental Biology Siberian Branch of the Russian Academy of Sciences, Sakhyanova str., 6, 670047, Ulan-Ude, Russia.
| | - Tatiana Alekseevna Mikhailova
- Laboratory of Natural and Anthropogenic Ecosystems, Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences, Lermontov str., 132, 664033, Irkutsk, Russia
| |
Collapse
|
2
|
de Oliveira EP, Marchi KE, Emiliano J, Salazar SMCH, Ferri AH, Etto RM, Reche PM, Pileggi SAV, Kalks KHM, Tótola MR, Schemczssen-Graeff Z, Pileggi M. Changes in fatty acid composition as a response to glyphosate toxicity in Pseudomonas fluorescens. Heliyon 2022; 8:e09938. [PMID: 35965982 PMCID: PMC9364109 DOI: 10.1016/j.heliyon.2022.e09938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/30/2021] [Accepted: 07/07/2022] [Indexed: 11/24/2022] Open
Abstract
Excessive use of herbicides decreases soil biodiversity and fertility. The literature on the xenobiotic response by microorganisms is focused on herbicide biodegradation as a selective event. Non-degradation systems independent of selection could allow the survival of tolerant bacteria in contaminated environments, impacting xenobiotic turnover and, consequently, bioremediation strategies. However, it is uncertain whether the response based on these systems requires selective pressure to be effective. The objective here was to analyze non-degradation phenotypes, enzymatic and structural response systems, of Pseudomonas fluorescens CMA-55 strain, already investigated the production pattern of quorum sensing molecules in response to glyphosate, not present at the isolation site. One mode of response was associated with decrease in membrane permeability and effective antioxidative response for 0–2.30 mM glyphosate, at the mid-log growing phase, with higher activities of Mn-SOD, KatA, and KatB, and presence of fatty acids as nonadecylic acid, margaric and lauric acid. The second response system was characterized by lower antioxidative enzymes activity, presence of KatC isoform, and pelargonic, capric, myristic, stearic, palmitoleic and palmitic acid as principal fatty acids, allowing the strain to face stressful conditions in 9.20–11.50 mM glyphosate at the stationary phase. Therefore, the bacterial strain could modify the fatty acid composition and the permeability of membranes in two response modes according to the herbicide concentration, even glyphosate was not previously selective for P. fluorescens, featuring a generalist system based on physiological plasticity.
Collapse
Affiliation(s)
- Elizangela Paz de Oliveira
- Department of Biotechnology, Genetics and Cell Biology, Maringá State University, Maringá, Paraná, Brazil
| | - Kathleen Evelyn Marchi
- Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| | - Janaina Emiliano
- Department of Microbiology, Londrina State University, Londrina, Paraná, Brazil
| | | | - Alisson Henrique Ferri
- Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| | - Rafael Mazer Etto
- Department of Chemistry, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| | - Péricles Martim Reche
- Department of Nursing and Public Health, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| | - Sônia Alvim Veiga Pileggi
- Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
| | | | - Marcos Rogério Tótola
- Department of Microbiology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Marcos Pileggi
- Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University, Ponta Grossa, Paraná, Brazil
- Corresponding author.
| |
Collapse
|